Date

Collaboration

Measurement of the F2 structure function in deep inelastic e+ p scattering using 1994 data from the ZEUS detector at HERA.

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 72 (1996) 399-424, 1996.
Inspire Record 420332 DOI 10.17182/hepdata.11638

We present measurements of the structure function \Ft\ in $e~+p$ scattering at HERA in the range $3.5\;\Gevsq < \qsd < 5000\;\Gevsq$. A new reconstruction method has allowed a significant improvement in the resolution of the kinematic variables and an extension of the kinematic region covered by the experiment. At $ \qsd < 35 \;\Gevsq$ the range in $x$ now spans $6.3\cdot 10~{-5} < x < 0.08$ providing overlap with measurements from fixed target experiments. At values of $Q~2$ above 1000 GeV$~2$ the $x$ range extends to 0.5. Systematic errors below 5\perc\ have been achieved for most of the kinematic region. The structure function rises as \x\ decreases; the rise becomes more pronounced as \qsd\ increases. The behaviour of the structure function data is well described by next-to-leading order perturbative QCD as implemented in the DGLAP evolution equations.

84 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the Proton Structure Function ${F_2}$ at low ${x}$ and low ${Q~2}$ at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 69 (1996) 607-620, 1996.
Inspire Record 401305 DOI 10.17182/hepdata.44843

We report on a measurement of the proton structure function $F_2$ in the range $3.5\times10~{-5}\leq x \leq 4\times10~{-3}$ and 1.5 ${\rm GeV~2} \leq Q~2 \leq15$ ${\rm GeV~2}$ at the $ep$ collider HERA operating at a centre-of-mass energy of $\sqrt{s} = 300$ ${\rm GeV}$. The rise of $F_2$ with decreasing $x$ observed in the previous HERA measurements persists in this lower $x$ and $Q~2$ range. The $Q~2$ evolution of $F_2$, even at the lowest $Q~2$ and $x$ measured, is consistent with perturbative QCD.

13 data tables

Data from shifted vertex analysis. Overall normalization error of 3% is notincluded.

Data from shifted vertex analysis. Overall normalization error of 3% is notincluded.

Data from shifted vertex analysis. Overall normalization error of 3% is notincluded.

More…

Precision Comparison of Inelastic electron and Positron Scattering from Hydrogen

Fancher, D.L. ; Caldwell, David O. ; Cumalat, John P. ; et al.
Phys.Rev.Lett. 37 (1976) 1323, 1976.
Inspire Record 4108 DOI 10.17182/hepdata.21910

Using 13.5-GeV beams at Stanford Linear Accelerator Center, we have compared electron and positron inelastic scattering over the range 1.2<|q2|<3.3 (GeV/c)2, 2<ν<9.5 GeV for the four-momentum and energy transfers, respectively. We find the ratio of the cross sections to be e+e−=1.0027±0.0035 (including statistical and systematic effects), with no significant dependence on q2 or ν. This result has appreciably smaller errors than previous attempts to find two-photon-exchange effects in electron or muon scattering.

1 data table

No description provided.