We present an analysis of electroweak leptonic couplings from high statistics experiments on Bhabha scattering and μ pair production at an energy of 34.5 GeV. The forward-backward charge asymmetry of the μ pairs was measured to be −0.098±0.023±0.005. The data were found to agree well with the standard theory of electroweak interaction giving sin2θW=0.27±0.07. The leptonic weak couplings were determined to begv=0.000±0.170 andgA=−0.481±0.055. The data were also used to investigate a class of composite models for leptons.
No description provided.
No description provided.
We present evidence for the production of Ξ· − , Ξ − in e + e − annihilation into hadrons. Our measurements yields: 0.026 ± 0.008 (stat.) ± 0.009 (syst.) Ξ − , Ξ − per hadronic event at W ∼ 34 GeV. Using our previous measurements of Λ, Λ and p, p production we obtain the relative yields (Ξ − , Ξ − /(Λ, Λ = 0.087 ± 0.03 ( stat. ) ± 0.03 ( syst. ) and (Ξ − , Ξ − /( p , p = 0.033 ± 0.011 ( stat. ) ± 0.011 ( syst. ) .
TOTAL YIELD PER HADRONIC EVENT AND COMPARISON WITH PREVIOUS TASSO MEASUREMENTS OF OTHER BARYONS PRODUCTION. EXTRAPOLATION HAS BEEN MADE TO MOMENTA LOWER THAN IN THE EXPERIMENTAL RANGE.
NUMERICAL VALUES SUPPLIED BY P. JOOS.
Exclusive production of proton-antiproton pairs by two photon scattering at CM energies between 2.0 GeV and 3.1 GeV has been measured with the TASSO detector at the e + e − storage ring PETRA. The angular distribution is flat within the accepted CM angular range | cos Θ ∗ |⩽0.7 . The integrated cross section (| cos Θ ∗ |⩽0.6) drops from about 4 nb at 2 GeV to less than 0.5 nb above 3 GeV. For the two-photon production of the η c (2984) and its subsequent decay into proton-antiproton the upper limit Γ(η c →γγ)· B (η c → p p )<0.32 keV (95% CL) is found.
No description provided.
No description provided.
UPPER LIMIT FOR THE PRODUCT OF THE ETA/C --> GAMMA GAMMA WIDTH AND THE BRANCHING RATIO OF ETA/C --> P AP IS DETERMINED TO BE 0.32 KEV WITH 90 PCT CL.
D ∗± production via e + e − →D ∗± X has been measured at an average CM energy of 34.4 GeV. The D ∗± energy spectrum is hard, with a maximum near χ = 0.6. The size of the D ∗ cross section, R D ∗ = σ( e + e − → D ∗ X ) σ μμ = 2.50 ± 0.64 ± 0.88 (assuming R D ∗0 = R D ∗+ ) indicates that a large fraction of charm quark production yields D ∗ mesons. The D ∗± angular distribution exhibits a forward—backward asymmetry, A = −0.28 ± 0.13. This is consistent with that expected in the standard theory for weak neutral currents and leads to | g A c | = 0.89 ± 0.44 for the axial vector coupling of the charm quark.
ASSUMES EQUAL RATES FOR CHARGED AND NEUTRAL D*'S. ONLY CHARGED ARE DETECTED.
DATA PEAKS AT X=0.6 TO 0.8.
ASYMMETRY MEASUREMENT. THETA IS THE ANGLE BETWEEN THE E- AND THE D*.
None
No description provided.
None
No description provided.
No description provided.
No description provided.
The cross sections of inelastic interaction of 22Ne with C, Al, Cu and Pb targets have been measured at an incident momentum of 4.1 GeV/c per nucleon. The following results have been obtained: 1060 +- 50 mb; 1520 +- 70 mb; 2150 +- 100 mb and 3900 +- 200 mb, respectively. The approximation of the dependence of the cross sections on the mass numbers of interacting nuclei and the measurement procedure are presented
No description provided.
None
No description provided.
None
No description provided.
No description provided.
No description provided.
None
.
.
.