Approximately 60 000 events have been collected in a spark chamber experiment at the CERN Proton Synchrotron which studied elastic diffraction scattering of π--p and p-p at incident momenta of 8.5, 12.4 and 18.4 GeV/c and of π+-p at 8.5 and 12.4 GeV/c. Magnetic analysis of the incoming and diffraction scattered particle, together with measurement of all angles, permitted each event to be determined as elastic subject to three constraints, so that the inelastic background was rejected with. high efficiency, even at the larger momentum, transfers. Much of the data have been processed by the CERN Automatic Flying-Spot DigitizerHPD. A detailed description of the experimental technique and of the methods of analysis is given. The results, together with data from lower energies, confirm the remarkable energy-independence of the shape of the pion-proton diffraction scattering peak up to |t| = 1.5 (GeV/c)2, wheret is the square of the four-momentum transfer, over a range of pion energies from 2 to 18 GeV. Proton-proton scattering does however appear to show a shrinking diffraction peak. In general, the data agree with other experiments using both counter and bubble chamber techniques, but some differences do appear. During the experiment, data were taken which set an upper limit of 2·102 μb/(GeV/c)2 on the differential elastic cross-section dσ/dt over a range of |t| from 20.9 to 23.4 (GeV/c)2 at 13.4 GeV/c incident pion momentum.
'1'. '2'. '3'. '4'.
'1'.
'1'.
A spark-chamber experiment on the peripheral production of 9245 pion pairs by 12- and 18-GeV/c incident pions is reported and analyzed in terms of a one-pion-exchange model in which the final state at the nucleon vertex contains generally one or more pions. The relevant dynamics and kinematics appropriate to this problem are reviewed, and the experimental and analysis techniques giving good resolution and detection-bias correction are discussed in some detail. From the results, fair agreement is found between the data and the one-pion-exchange calculation of the ρ0 production cross sections and of the associated missing-mass spectra. The ρ0 is found to be consistent with a single peak, and no evidence of peak splitting is observed. A search for a narrow s-wave dipion resonance is made with negative results. Normalizing to the ρ0 meson, the s-wave π+π− scattering cross section is computed from the abundant low-dipion-mass events, giving a cross section falling smoothly from 50 mb (300 MeV) to about 20 mb (600 MeV). No evidence of an s-wave resonance is found in this range of energies. Below 450 MeV, the pion-pion scattering asymmetry favors backward scattering (by 2½ standard deviations), which is consistent with a negative and falling J=T=0 phase shift. The extrapolated forward-backward asymmetry and the s-wave cross section are both consistent with a J=T=0 phase shift near|90°| at about 750 MeV.
Dipion production cross section under RHO resonance. Errors are statistical only.
Dipion production cross section under RHO resonance. Errors are statistical only.
RHO0 cross section. Errors are statistical only.
The reactions pp → NN π are studied at 19 GeV/ c and analysed in terms of the amplitudes with the low mass N π system in isospin states 1 2 and 3 2 respectively. The I − 1 2 cross section is compared with the corresponding one in π p→ ππ N at 8 GeV/ c .
'1'.
Photoabsorption cross sections in hydrogen and deuterium have been measured from 3.7 to 17.9 GeV. The energy dependences are similar to those of strong-interaction total cross sections, as expected from the vector-meson-dominance model. The magnitude of σT(γp) can be compared with data from γp→ρ0p to determine a γ−p coupling constant, γρ24π=0.37±0.03. This value disagrees with that obtained on the ρ mass shell, and hence there is only qualitative agreement with the vector-meson-dominance model.
Axis error includes +- 1/1 contribution (CORRECTION OF ACCEPTANCE, POSSIBLE LOSSES, ETC).
The differential cross-sections in the range of four momentum transfer squared from 0.003 to 0.120 (GeV c) 2 were measured at 30, 50 and 70 GeV by using a thin polyethilene target in the internal proton beam of the Serpukhov accelerator. The slope parameter, the ratio of the real to the imaginary part of the forward amplitude and the cross-section in the diffraction cone were measured.
No description provided.
ASSUMING UNIFORM SLOPE.
The total cross sections of π± on protons in the momentum interval from 0.40 to 0.90 GeV/c have been measured with high relative precision. In this interval the statistical error varies between 10 and 20 μb. No new structure is observed.
No description provided.
K+p and K+d total cross sections were measured in the momentum range 0.57-1.16 GeV/c using a secondary, separated kaon beam of the Lawrence Berkeley Laboratory Bevatron and conventional transmission-counter techniques. No evidence was found for structure in the cross section of either reaction as previously indicated near 0.7 GeV/c.
No description provided.
Final total cross sections are given for a counter experiment at SLAC on hadronic photon absorption in hydrogen, deuterium, carbon, copper, and lead at incident energies from 3.7 to 18.3 GeV. Some of the nucleon cross sections have been revised and the C, Cu, and Pb data from 3.7 to 7.4 GeV have not been reported previously. The cross sections for complex nuclei vary approximately as A0.9 in our energy range, indicating that the photon interacts, at least partially, as a strongly interacting particle. The energy dependences of the proton and neutron cross sections are also similar to those of hadron-nucleon cross sections and hence may be fitted by a typical Regge parametrization, yielding σT(γp)=(98.7±3.6)+(65.0±10.1)ν−12 μb and σT(γn)=(103.4±6.7)+(33.1±19.4)ν−12 μb, where ν is the photon energy in GeV. These extrapolate to the same value at infinite energy, consistent with Pomeranchukon exchange, and the energy-dependent part yields an isovector-to-isoscalar-exchange ratio of 0.18 ± 0.06. While these observations are qualitatively consistent with vector meson dominance, quantitatively vector dominance fails in relating our results to ρ photo-production on hydrogen or to experiments determining the ρ-nucleon cross section. Vector dominance cannot be rescued by assuming that the ρ-photon coupling constant depends on the photon mass. Instead, an additional short-range interaction is apparently required, possibly due to a heavy (≳ 2 GeV / c2) vector meson or to a bare-photon interaction. The additional interaction accounts for approximately 20% of the total photoabsorption cross section.
DATA ARE GROUPED IN SETS OF FOUR TAGGING ENERGIES FOR EACH INCIDENT POSITRON ENERGY.
CROSS SECTIONS FOR EACH INCIDENT POSITRON ENERGY AVERAGED OVER THE FOUR TAGGING ENERGIES.
TOTAL CROSS SECTION, EFFECTIVE NUCLEON NUMBER (A-EFF) AND EFFECTIVE ATTENUATION (A-EFF/A) FOR CARBON, COPPER AND LEAD TARGETS. 'SIG(NUCLEON)' IS THE AVERAGE NUCLEON CROSS SECTION.
Based on a sample of about 3500 events, we have measured the total and differential cross sections of p p → n n in the 700–760 MeV/ c incident momentum region. It is found that σ CE = 10.7 ± 0.2 mb at the average momentum of 730 MeV/ c . The differential angular distribution is characterised by a sharp peak and a dip in the forward direction followed by a secondary maximum. The position of the dip corresponds to | t | ≈ m π 2 . These results are compared with the predictions of the model of Bryan-Phillips. On the other hand, this dip-bump structure can be well understood on a simple picture involving a π exchange and a constant background (for | t | ≲ 3 m π 2 ).
No description provided.
No description provided.
No description provided.
A thin polyethylene target was exposed to the internal proton beam of the Serpukhov accelerator at 30, 50, and 70 GeV. The wide-angle recoil protons were registered by photoemulsion stacks and the differential cross sections of the elastic p−p scattering in the range of four-momentum transfer squared 0.0025≤|t|≤0.12 (GeV/c)2 were measured. The ratio of the real to the imaginary part of the forward nuclear amplitude α, the slope parameter of the diffraction peak b, and the total elastic cross section σel were found to be as follows: at 30 GeV, α=−0.183±0.051, b=10.61±0.27 (GeV/c)−2, σel=7.7±0.2 mb; at 50 GeV, α=−0.068±0.040, b=11.25±0.28 (GeV/c)−2, σel=7.0±0.2 mb; at 70 GeV, α=−0.104±0.065, b=11.21±0.40 (GeV/c)−2, σel=7.1±0.2 mb.
No description provided.
No description provided.
No description provided.