K+p and K+d total cross sections were measured in the momentum range 0.57-1.16 GeV/c using a secondary, separated kaon beam of the Lawrence Berkeley Laboratory Bevatron and conventional transmission-counter techniques. No evidence was found for structure in the cross section of either reaction as previously indicated near 0.7 GeV/c.
No description provided.
The forward cross sections for the reactions π−p→K+Σ− and K−p→π+Σ− have been determined for incident particle momenta in the range of 2.75 to 3.50 GeV/c, and an upper limit was established at 5.00 GeV/c. These measurements show that the double-charge-exchange process π−p→K+Σ− is suppressed by a factor of 1500 at 3 GeV/c relative to the single-exchange reaction π+p→K+Σ+.
No description provided.
We have measured the reactions π±p→π±p and π+p→K+Σ+ at 5.0 GeV/c in the region 2.2<−t<3.5 (GeV/c)2. We find the minimum cross section of the dip at −t=2.8 (GeV/c)2 in π+p elastic scattering to be 0.16 ± 0.05 μb/GeV2. The π−p differential cross section exhibits similar structure, while the π+p→K+Σ+ channel shows a steady decline in cross section as |t| increases. The polarization of the Σ+ remains large and positive to at least −t=2.8 (GeV/c)2.
No description provided.
No description provided.
The differential cross section for π±−p elastic scattering at 180° was measured from 0.572 to 1.628 GeVc using a double-arm scintillation-counter spectrometer with an angular acceptance θ* in the center-of-mass system defined by −1.00≤cosθ*≤−0.9992. The π+−p cross section exhibits a large dip at 0.737 GeVc and a broad peak centered near 1.31 GeVc. The π−−p cross section exhibits peaks at 0.69, 0.97, and 1.43 GeVc.
No description provided.
Charmonium is a valuable probe in heavy-ion collisions to study the properties of the quark gluon plasma, and is also an interesting probe in small collision systems to study cold nuclear matter effects, which are also present in large collision systems. With the recent observations of collective behavior of produced particles in small system collisions, measurements of the modification of charmonium in small systems have become increasingly relevant. We present the results of J/ψ measurements at forward and backward rapidity in various small collision systems, p+p, p+Al, p+Au and 3He+Au, at √sNN =200 GeV. The results are presented in the form of the observable RAB, the nuclear modification factor, a measure of the ratio of the J/ψ invariant yield compared to the scaled yield in p+p collisions. We examine the rapidity, transverse momentum, and collision centrality dependence of nuclear effects on J/ψ production with different projectile sizes p and 3He, and different target sizes Al and Au. The modification is found to be strongly dependent on the target size, but to be very similar for p+Au and 3He+Au. However, for 0%–20% central collisions at backward rapidity, the modification for 3He+Au is found to be smaller than that for p+Au, with a mean fit to the ratio of 0.89±0.03(stat)±0.08(syst), possibly indicating final state effects due to the larger projectile size.
J/psi nuclear modification in p+Au collisions as a function of nuclear thickness (T_A). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
A search for the flavor-changing neutral-current decay $B^{+}\to K^{+}\nu\bar{\nu}$ is performed at the Belle II experiment at the SuperKEKB asymmetric energy electron-positron collider. The results are based on a data sample corresponding to an integrated luminosity of $63\,\mbox{fb}^{-1}$ collected at the $\Upsilon{(4S)}$ resonance and a sample of $9\,\mbox{fb}^{-1}$ collected at an energy $60\mathrm{\,Me\kern -0.1em V}$ below the resonance. A novel measurement method is employed, which exploits topological properties of the $B^{+}\to K^{+}\nu\bar{\nu}$ decay that differ from both generic bottom-meson decays and light-quark pair production. This inclusive tagging approach offers a higher signal efficiency compared to previous searches. No significant signal is observed. An upper limit on the branching fraction of $B^{+}\to K^{+}\nu\bar{\nu}$ of $4.1 \times 10^{-5}$ is set at the 90% confidence level.
The effects of resonance production on correlations in final states containing kaons in p p annihilations at 0.76 GeV c have been in detail. We show that correlation distributions of unlike kaon pairs, K S 0 K ± , can be completerly by resonance production. However, for like kaon pairs, K S ) K S 0 , we require the added effects of second-order interference. Using this interference effect we are able to measure the dimensions of the emission region for kaons in p p annihilations at low energy as R = 0.9 ± 0.2 fm.
No description provided.
We present the first comprehensive tests of light-lepton universality in the angular distributions of semileptonic $B^0$-meson decays to charged spin-1 charmed mesons. We measure five angular-asymmetry observables as functions of the decay recoil that are sensitive to lepton-universality-violating contributions. We use events where one neutral $B$ is fully reconstructed in $\Upsilon\left(4S\right)\to{}B \overline{B}$ decays in data corresponding to $189~\mathrm{fb}^{-1}$ integrated luminosity from electron-positron collisions collected with the Belle II detector. We find no significant deviation from the standard model expectations.
Jet properties ine+e− annihilation at center of mass energies of 14, 22, 35 and 43.7 GeV were studied with the data collected in the TASSO detector at PETRA, using the same evaluation procedures for all the energies. The total hadronic cross section ratio for the center of mass energy interval 39–47 GeV was determined to be ℛ=4.11±0.05 (stat)±0.18(syst.) at\(\langle \sqrt s \rangle= 43 - 7\) GeV. Corrected distributions of global shape variables are presented as well as the inclusive charged particle distributions for scaled momentum and transverse momentum. The center of mass energy evolution of the average sphericity, thrust, aplanarity and particle momentum is shown.
Based on a sample of 22 four-prong D 0 / D 0 decays produced in hydrogen by 360 GeV/ c π − , we present the following new results: mean lifetime τ = (3.5 −0.9 +1.4 ) x 10 −13 s ; production cross section for x F > 0.0, σ = (10.3 ± 3.5) ωb ; the D → K ± π ± π + π − branching ratio = (7.1 ± 2.5)%.
No description provided.