We present results from a search for anomalous WW and WZ production in ppbar collisions at sqrt(s) = 1.8 TeV. We used ppbar->evjjX events observed during the 1992-1993 run of the Fermilab Tevatron collider, corresponding to an integrated luminosity of 13.7 +- 0.7 pb^-1. A fit to the transverse momentum spectrum of the W boson yields direct limits on the CP-conserving anomalous WWgamma and WWZ coupling parameters of -0.9 < delta kappa < 1.1 (with lambda = 0) and -0.6 < lambda < 0.7 (with delta kappa = 0) at the 95% confidence level, for a form factor scale Lambda = 1.5 TeV, assuming that the WWgamma and WWZ coupling parameters are equal.
CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: g = g0/(1 + M(gamma Z)**2/CONT(NAME=SCALE)**2)**n.
A measurement of the cross section for production of single, isolated photons is reported for transverse energies in the range of 10-125 GeV, for two regions of pseudorapidity, |\eta|<0.9 and 1.6<|\eta|<2.5. The data represent 12.9 pb-1 of integrated luminosity accumulated in p-pbar collisions at sqrt{s} = 1.8 TeV and recorded with the D0 detector at the Fermilab Tevatron Collider.
Numerical values supplied by J. Womersley.
Numerical values supplied by J. Womersley.
This study reports the first measurement of the azimuthal decorrelation between jets with pseudorapidity separation up to five units. The data were accumulated using the D\O\ detector during the 1992--1993 collider run of the Fermilab Tevatron at $\sqrt{s}=$ 1.8 TeV. These results are compared to next--to--leading order (NLO) QCD predictions and to two leading--log approximations (LLA) where the leading--log terms are resummed to all orders in $\alpha_{\scriptscriptstyle S}$. The final state jets as predicted by NLO QCD show less azimuthal decorrelation than the data. The parton showering LLA Monte Carlo {\small HERWIG} describes the data well; an analytical LLA prediction based on BFKL resummation shows more decorrelation than the data.
Distribution of the pseudorapidity interval of the two jets at the extremes of pseudorapidity. Data are read from the graph and the errors are statistical only.
Normalized distributions of the azimuthal angle difference of the two jets at the extremes of pseudorapidity in 3 pseudorapididity difference intervals. Data are read from the graph and the errors are statistical only.
The correlation between the PHI and ETARAP difference distributions as used in the analysis.Data are read from the graph and the errors include the statiucal and un-correlated systematic errors added in quadrature.