The Michel parameters ϱ, η, ξ, and ξδ, the chirality parameter ξ h and the τ polarization P τ are measured using 32012 τ pair decays. Their values are extracted from the energy spectra of leptons and hadrons in τ − → l − ν l ν τ and τ − → π − ν τ decays, the energy and decay angular distributions in τ − → ϱ − ν τ decays, and the correlations in the energy spectra and angular distributions of the decay products. Assuming universality in leptonic and semileptonic τ decays, the results are ϱ = 0.794±0.039±0.031, η = 0.25±0.17±0.11, ξ = 0.94±0.21±0.07, ξδ = 0.81±0.14±0.06, ξ h = −0.970±0.053±0.011, and P τ = −0.154±0.018±0.012. The measurement is in agreement with the V-A hypothesis for the weak charged current.
No description provided.
From 2540 Z 0 → τ + τ − events, we determine the inclusive decay branching fractions of the τ -lepton into one and three charged particles to be 0.856 ± 0.006 (stat.) ± 0.003 (syst.) and 0.144 ± 0.006 (stat.) ± 0.003 (syst.), respectively. The leptonic branching fractions are measured to be 0.175 ± 0.008 (stat.) ± 0.005 (syst.) for τ → μν μ ντ and 0.177 ± 0.007 (stat.) ± 0.006 (syst.) for τ → eν e ν τ . We determined the τ lifetime both from three-prong decays using the decay length and from one-prong decays using the impact parameter. The results from the two independent methods agree and yield a combined value of [0.309 ± 0.023 (stat.) ± 0.030 (syst.)] × 10 −12 s.
ALPHAS extracted from the ratio of the branching fractions.
A search for the 0 + → 2 + neutrinoless double-beta decay of 76 Ge into the first excited state of 76 Se has been carried out using a coincidence technique between Ge and NaI detectors. Since the expected number of counts is very small and mixed with a continuous background of natural radioactivity, special care has been taken to maintain the good energy resolution of the detectors. As a consequence, the experimental data display, after 6207 h statistical time, a coincidence signal of 19.3 ± 5.8 counts, between an energy deposition of 1484.0 ± 0.3 keV in the Ge detectors and 561 ± 10 keV in the NaI detectors. Both Ge and NaI energies are within the experimental errors, compatible with the expected values. No other unidentified coincidence signal has been found in the full Ge-NaI energy matrix, and no similar γγ cascade has been found within our background. Even if the low statistics does not completely rule out the possibility of a statistical fluctuation, this result should encourage further experiments with improved sensitivities.
SE76* IS IN 2+ EXGITED STATE.