We report on coherent interactions in a 2.5 event/μb K − d exposure. The predominant channel studied is K − d → K − π + gp − d (415 events). We find strong Q- and L-production in the (K ππ ) system. The production mechanism determines I = 1 2 for both enhancements and a spin-parity in the series 0 − , 1 + ,2 − … . A spin-parity analysis shows the Q to be a 1 + object, while the L is 1 + or 2 − , although a higher spin cannot be excluded. The cross sections for Q and L production and other final states are presented.
CORRECTED FOR UNSEEN RECOIL DEUTERONS BY EXTRAPOLATION. (UNCORRECTED CROSS SECTIONS ARE THOSE OBSERVED WITH P(DEUT) > 140 MEV/C).
The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.
Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.
Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.
Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.
The strong coupling constant, αs, has been determined in hadronic decays of theZ0 resonance, using measurements of seven observables relating to global event shapes, energy correlatio
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
A polarized proton beam extracted from SATURNE II and the Saclay polarized proton target were used to measure the rescattering observables$K_{onno}$and
No description provided.
No description provided.
No description provided.
A measurement of novel event shapes quantifying the isotropy of collider events is performed in 140 fb$^{-1}$ of proton-proton collisions with $\sqrt s=13$ TeV centre-of-mass energy recorded with the ATLAS detector at CERN's Large Hadron Collider. These event shapes are defined as the Wasserstein distance between collider events and isotropic reference geometries. This distance is evaluated by solving optimal transport problems, using the 'Energy-Mover's Distance'. Isotropic references with cylindrical and circular symmetries are studied, to probe the symmetries of interest at hadron colliders. The novel event-shape observables defined in this way are infrared- and collinear-safe, have improved dynamic range and have greater sensitivity to isotropic radiation patterns than other event shapes. The measured event-shape variables are corrected for detector effects, and presented in inclusive bins of jet multiplicity and the scalar sum of the two leading jets' transverse momenta. The measured distributions are provided as inputs to future Monte Carlo tuning campaigns and other studies probing fundamental properties of QCD and the production of hadronic final states up to the TeV-scale.
IRing2 for HT2>=500 GeV, NJets>=2
IRing2 for HT2>=500 GeV, NJets>=3
IRing2 for HT2>=500 GeV, NJets>=4
An experimental investigation of the structure of identified quark and gluon jets is presented. Observables related to both the global and internal structure of jets are measured; this allows for test
The measured jet broadening distributions (B) in quark and gluon jets seperately.
Measured distributions of -LN(Y2), where Y2 is the differential one-subjet rate, that is the value of the subjet scale parameter where 2 jets appear from the single jet.
The mean subjet multiplicity (-1) for gluon jets and quark jets for different values of the subject resolution parameter Y0.
We have observed diffraction dissociation of KL0 mesons with a carbon target into the exclusive final states KS0π+π−, KS0ω, and KS0φ. The diffraction production cross section for these states is not strongly dependent on the incident energy, varying at most by 30% between 75 and 150 GeV. The mass distributions do not change appreciably as a function of laboratory energy. The ratio of the diffractive mass-threshold production of K*±π∓, KS0ρ, KS0ω, and KS0φ is compared with previously obtained lower-energy data.
TP (=T-TMIN) distribution for K0S PI+ PI- events satisfying the diffractive cuts.
TP distributions for K0S OMEGA and K0S PHI events which satisfy the diffractive cuts.
CROSS SECTIONS PER NUCLEUS.
We report measurements from elastic photoproduction of ω's on hydrogen for photon energies between 60 and 225 GeV, elastic φ photoproduction on hydrogen between 35 and 165 GeV and on deuterium between 45 and 85 GeV, elastic photoproduction on deuterium of an enhancement at 1.72 GeV/c2 decaying into K+K−, and elastic and inelastic photoproduction on deuterium of pp¯ pairs.
No description provided.
No description provided.
No description provided.
Measurements of the energy and t dependence of diffractive Jψ photoproduction are presented. A significant rise in the cross section over the energy range 60-300 GeV is observed. It is found that (30±4)% of the events are inelastic.
No description provided.