$K^+$ nucleon elastic scattering at 180° between 1.0 and 1.5 GeV/c incident momentum

Adams, U. ; Carter, R.S. ; Cook, V. ; et al.
Nucl.Phys.B 87 (1975) 41-51, 1975.
Inspire Record 1392682 DOI 10.17182/hepdata.32061

We have measured the cross section at 180° for K + p and K + n elastic scattering in the momentum range 1.0 to 1.5 GeV/ c . The K + n cross section was measured on deuterium and the K + p on hydrogen and deuterium. We were thus able to measure directly the difference between free nucleon (proton) scattering and bound nucleon (proton) scattering at large angles. This difference was found to be small and within our experimental accuracy the K + p(n) cross section should be equal to the K + p (free) cross section at 180°. We found no evidence for an s -channel resonance Z ∗ in either the K + p or K + n system. A comparison of our data and those of other groups with theoretical predictions is given.

2 data tables

DEUTERIUM TARGET. U IS ABOUT 0.1 GEV**2.

HYDROGEN AND DEUTERIUM TARGET DATA ARE IN GOOD AGREEMENT. THESE CROSS SECTIONS ARE A WEIGHTED AVERAGE.


A Study of the Reactions $K^- p \to \Lambda \pi^0$, $\Lambda \eta$, $\Lambda \eta^\prime$ at 8.25-{GeV}/$c$ Incident $K^-$ Momentum

The Birmingham-CERN-Glasgow-Michigan State-Paris collaboration Al-Harran, S. ; Baubillier, M. ; Bloodworth, I.J. ; et al.
Nucl.Phys.B 183 (1981) 269-294, 1981.
Inspire Record 155276 DOI 10.17182/hepdata.34295

Differential cross sections and polarizations are presented for the reactions K − p → Λπ 0 , Λη , Λη ′ at 8.25 GeV/ c incident K − momentum. The data, which come from a high statistics experiment in the CERN 2 m bubble chamber, are compared with previous experimental results on the same reactions and with current theoretical ideas.

11 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the Baryon Exchange Reactions $K^- p \to \Lambda \eta$, $K^- p \to \Lambda \pi^0$ at 6-{GeV}/$c$ and the Value of the $\eta N N$ Coupling Constant

Becker, H. ; Blanar, G. ; Blum, W. ; et al.
Nucl.Phys.B 167 (1980) 292-306, 1980.
Inspire Record 143463 DOI 10.17182/hepdata.43413

In order to determine the ηNN coupling constant we have measured the two reactions K − p→ Λη and K − p→ Λπ 0 with a magnetic wire chamber spectrometer which contained a gamma counter for the γγ decays of π 0 and η. The Λ polarization and the differential cross sections are given. The latter have quite different u dependences. Their ratio is interpreted, in terms of a nucleon-Regge exchange model, as the effect of a small ηNN coupling constant for which we obtain G η NN 2 = G π NN 2 · (0.26 ± 0.10) as allowed by SU(3). The large value given by Heisenberg's non-linear field theory, G η NN 2 = G π NN 2 · 0.9, is excluded by this measurement if the characteristic u dependence of the Λπ 0 channel is attributed to N α Regge exchange.

4 data tables

Axis error includes +- 10/10 contribution.

No description provided.

Axis error includes +- 10/10 contribution.

More…

Measurement of Differential Cross-Section and Polarization in the Backward Peak of the Reactions pi- p --> Lambda K0 and pi- p --> Lambda K* (890) at 8-GeV/c

Brundiers, H. ; Hartung, R. ; Runge, K. ; et al.
Nucl.Phys.B 119 (1977) 349-361, 1977.
Inspire Record 123952 DOI 10.17182/hepdata.35527

Differential cross sections and polarizations have been measured for the backward peaks in the reactions π − p →Λ K 0 and π − p →Λ K ∗ (890) at 8 GeV/c. The experiment was performed with a liquid hydrogen target at the ω spectrometer. The cross sections for u′>−2 ( GeV /c) 2 are 0.27 ± 0.03 μ b for π − p →Λ+ K 0 and 0.55±0.07 μ b for π − p →Λ K ∗0 . Large positive Λ polarization was observed in both reactions for u ′>−0.5 (GeV/ c ) 2 . The dominant production mechanism was found to be unnatural baryon exchange.

3 data tables

Axis error includes +- 0.0/0.0 contribution (?////).

Axis error includes +- 0.0/0.0 contribution (?////).

No description provided.


Large angle k+ p elastic scattering at 10 gev/c

Baglin, C. ; Briandet, P. ; Carlson, P.J. ; et al.
Phys.Lett.B 47 (1973) 89-92, 1973.
Inspire Record 95211 DOI 10.17182/hepdata.28014

K + p elastic scattering has been measured over nearly the whole angular range at an incident momentum of 10 GeV/ c . The differential cross-section is found to decrease smoothly in the forward direction to - t ≈ 2 (GeV/ c ) 2 , where there is a change in slope, followed by a further decrease to - t ≈ 6 (GeV/ c ) 2 . Around 90° c.m. the cross-section is approximately 1 nb/(GeV/ c ) 2 , which is more than two orders of magnitude lower than at 5 GeV/ c . The backward peak has no structure.

1 data table

THESE DATA ARE REPORTED MORE FULLY IN C. BAGLIN ET AL., NP B98, 365 (1975).


K0(L) p ---> K0(S) p SCATTERING FROM 1-GeV/c TO 10-GeV/c

Brandenburg, G.W. ; Johnson, William B. ; Leith, David W.G.S. ; et al.
Phys.Rev.D 9 (1974) 1939, 1974.
Inspire Record 81133 DOI 10.17182/hepdata.21986

The differential cross sections for KL0p→KS0p scattering are presented in several momentum intervals between 1 and 10 GeVc. The data are strongly peaked in the forward direction, characteristic of a large s-channel helicity-nonflip scattering amplitude in this reaction, and a distinct break in the differential cross section occurs at |t|=0.3 GeV2. The phase of the forward scattering amplitude, φ, is consistent with being independent of momentum. The average value of the phase, φ=−133.9±4.0∘, corresponds to a Regge trajectory α(0)=0.49±0.05 in agreement with the canonical ρ, ω0 Regge intercept, α(0)∼0.5. However, this result disagrees with the Regge trajectory determined from the energy dependence of the forward cross section, α(0)=0.30±0.03, indicating a breaking of the Regge phase-energy relation. Comparisons of KL0p→KS0p and π−p→π0n scattering data reveal substantial differences in the energy dependence of the differential cross sections. Comparisons to KN charge-exchange data then suggest that direct-channel (absorption) effects may explain the differences in πN and KN channels.

22 data tables

No description provided.

No description provided.

No description provided.

More…

A measurement of anti-p p ---> pi+ pi- and anti-p p ---> k- k+ for small values of t and u at 3 and 4 gev/c

Brabson, A. ; Calvelli, G. ; Cittolin, S. ; et al.
Phys.Lett.B 42 (1972) 287-290, 1972.
Inspire Record 85008 DOI 10.17182/hepdata.28189

We have measured with good statistics the differential cross section for p p →π + π − , K + K − around 0°. Our data and previous results show that the s -dependence of dσ/d t has a value compatible with the appropriate baryon exchange.

6 data tables

No description provided.

No description provided.

No description provided.

More…

K0(L) p ---> p K0(S) BACKWARD SCATTERING FROM 1.0-GeV/c TO 7.5-GeV/c

Brandenburg, G.W. ; Johnson, William B. ; Leith, David W.G.S. ; et al.
Phys.Rev.Lett. 30 (1973) 145, 1973.
Inspire Record 73583 DOI 10.17182/hepdata.21406

Backward scattering in the reaction KL0p→pKS0 is studied in the momentum interval 1.0 to 7.5 GeV/c. Comparison of KL0p→pKS0 and K+p→pK+ backward scattering, where respectively Σ exchange and Λ plus Σ exchange can contribute in the u channel, reveals that dσdΩ180°(KL0p→pKS0dσdΩ180°(K+p→pK+) above the resonance region. This result provides direct evidence for the dominance of the Λ contribution over the Σ contribution in the K+p→pK+ production amplitude.

1 data table

No description provided.


Baryon exchange in the reactions k- n ---> y pi- at 3-GeV/c

The SABRE collaboration Barloutaud, R. ; Merrill, D. ; Scheuer, J.C. ; et al.
Nucl.Phys.B 26 (1971) 557-572, 1971.
Inspire Record 68766 DOI 10.17182/hepdata.33717

At 3 GeV/ c , the total and differential cross sections of the reactions K − n → Y π − have been determined for nine S = −1 baryonic states. Backward peaks associated with a dip near u = −0.2 are observed in many cases. They have been interpreted, for the isospin-zero Y-states, in terms of a proton-exchange mechanism. The backward peaks in the reactions K − n → Λπ − and K − n → Σ o π − have been more quantitatively related to the backward π N → N π differential cross sections at the same energy. This comparison leads to the conclusion, that the first reaction is dominated by nucleon exchange, whereas the second one requires a more complex exchange mechanism.

8 data tables

No description provided.

No description provided.

No description provided.

More…