Total and differential cross sections ofK*−(890),K*−(890),\(\bar K^{ * 0} \)(890),K*0(890),\(\bar K^{ * 0} \)(1430) andϱ0(770) produced inK−p interactions at 110 GeV/c are presented. The cross sections of the neutral resonances show a smooth increase with energy from 10 to 110 GeV/c incident momentum. For theK*+(890) and theK*0(890), i.e. the resonances with strangenessS=+1, this rise is quite significant: their cross sections practically double between 32 GeV/c and 110 GeV/c incidentK− momentum. About 50% of the neutral kaons and 30% of charged pions produced inK−p interactions at our energy are found to be decay products of the resonances considered.
No description provided.
No description provided.
No description provided.
Inclusive e+e− production in 17-GeV/c π−p collisions has been measured. An excess of e+e− pairs over those from known sources for 0.1<~mee<~0.6 GeV and x<0.5 was found. No evidence is found for enhancements in specific final states involving electrons and photons or charged particles. The photon multiplicity associated with these pairs is measured.
No description provided.
The reaction π − p → K + K − π − p at 16 GeV/ c was studied in the CERN OMEGA spectrometer and a partial-wave analysis (PWA) of the low-mass (K + K − π − ) system (1.3–2.0 GeV) was performed. Only states in the unnatural spin-parity series produced by natural parity exchange are important and they approximately conserve t -channel helicity. The 1 + S K ∗ K wave dominates the low-mass (K + K − π − ) region. We observe an enhancement in 2 − P K ∗ K wave at a mass of 1.7 GeV, consistent with the decay of the A 3 resonance.
TOTAL ACCEPTANCE CORRECTED CROSS SECTION.
ACCEPTANCE CORRECTED.
MOST IMPORTANT CONTRIBUTING STATES CORRECTED FOR ACCEPTANCE.
By using (pp) interactions at three different c.m. energies,\(\left( {\sqrt 8 } \right)_{pp} \)=30, 44, 62 GeV, it is shown that the average charged-particle multiplicity
WITH SQRT(S) OF 30 GEV.
WITH SQRT(S) OF 44 GEV.
WITH SQRT(S) OF 62 GEV.
We present results on the jet structure observed in multihadronic events produced by e+e− annihilation in the Mark I magnetic detector at SPEAR. The evidence for jet structure and the jet-axis angular distribution are reported. We give inclusive distributions of the hadrons in Feynman x, rapidity, and transverse momentum relative to the jet axis.
Observed particle PT with respect to jet axis for events with three or more detected charged particles.
No description provided.
No description provided.
The high mass μ + μ − pairs produced by 280 GeV μ + on a carbon target are studied in a search for the Y production. The high mass continuum in the region 2–18 GeV is interpreted in terms of QED pair production and of μ pairs originating from the decay of hidden and open charm particles as well as of hadrons ( π , K) from deep inelastic interactions. The upper limit for the upsilon production by muons is found to be, at the 90% confidence level, σ γ ·(γ→μ + μ − )<13·10 −39 cm 2 /nucleon.
.
.
.
The topology of hadronic e + e − annihilation events has been analysed using the sphericity tensor and a cluster method. Comparison with quark models including gluon bremsstrahlung yields good agreement with the data. The strong-coupling constant is determined in 1st order QCD to be α S =0.19±0.04 (stat) ± 0.04 (syst.) at 22 GeV and α S =0.16 ±0.02± 0.03 at 34 GeV. The differential cross section with respect to the energy fraction carried by the most energetic parton agrees with the prediction of QCD, but cannot be reproduced by a scalar gluon model. These results are stable against variations of the transverse momentum distribution of the fragmentation function within the quoted errors.
No description provided.
We measured the total cross section for p p scattering at √ s = 53 GeV at the CERN ISR. The method was based on the measurement of the total interaction rate and of the ISR luminosity. The result obtained, σ tot = 44.1 ± 2.0 mb, suggests that σ tot ( p p) starts increasing at ISR energies. A measurement of the p p differential cross section was also performed: the results show a change in the slope at | t | ≈ 0.1 GeV 2 , similar to that observed in pp scattering.
No description provided.
No description provided.
The jet character of the hadronic final states produced ine+e− annihilations is studied in terms of jet measures such as thrust, sphericity, jet opening angle and jet masses, in the energy range 7.7 to 31.6 GeV. All distributions and averages have been corrected for detector effects and initial state radiation. The energy dependence of the averages of these jet quantities is used to estimate the contributions due to perturbative QCD and fragmentation effects. Correlations between the jet measures and the multiplicity of charged hadrons are also presented.
DIFFERENTIAL THRUST DISTRIBUTIONS WHERE THRUST IS MAX(SUM(ABS(PLONG))/SUM(ABS(P))).
MEAN THRUST VALUES AS A FUNCTION OF CM ENERGY.
DIFFERENTIAL SPERICITY DISTRIBUTIONS WHERE SPHERICITY IS 3/2*MIN(SUM(PT**2)/SUM(ABS(P))).
Energy correlations have been measured with the MARK II detector at the PEP storage ring (Stanford Linear Accelerator Center) at c.m. energy of 29 GeV and are compared to first-order QCD predictions. Fragmentation processes are significant and limit the precision with which the first-order strong-coupling constant can be determined.
CORRELATION IS THE ENERGY WEIGHTED CROSS SECTION FOR OBSERVING THE ENERGY E1 IN THE SOLID ANGLE DOMEGA1 AND THE ANGLE E2 IN THE SOLID ANGLE DOMEGA2.SUMMED OVER ALL PAIRS OF PARTICLES IN DOMEGA1 AND DOMEGA2 AND ALL EVENTS.
MEASUREMENT OF THE STRONG COUPLING CONSTANT.