An analysis of W- and Z-boson production using data from the Collider Detector at Fermilab at √s =1.8 TeV yields σ(W→ev)/σ(Z→ee)=10.2±0.8(stat)±0.4(syst). The width of the W boson, Γ(W), and a limit on the top-quark mass independent of decay mode are extracted from this measurement.
No description provided.
The full TASSO data have been used to study the inclusive production of strange mesons ine+e− annihilations. Differential and total cross sections have been measured in the centre of mass energy range 14 to 44 GeV forK0,\(\bar K^0\) and 34.5 to 44 GeV forK*± (892). We have investigated the strange meson production properties in jets by studying the rapidity andpt2 distributions as well as the evolution of the multiplicities as a function of the event sphericity. We find no evidence that the strange meson yields increase with increasing sphericity faster than the total charged multiplicity.
Scaled differential cross sections for K0 production. Errors are statistical and systematic combined.
Scaled differential cross section for K0 production. Errors are statistical and systematic combined.
Scaled differential cross section for K0 production. Errors are statistical and systematic combined.
We present an analysis of strange particle production frome+e− annihilation into multihadronic final states. The experiment was performed with the CELLO detector at the PETRA storage ring at DESY, the data was taken at a centre of mass energy of 35 GeV with an integrated luminosity of 86 pb−1. The particlesKS0,K*± and Λ have been identified by their characteristic decays, and differential cross sections for their production have been obtained. From a comparison ofKS0 andK*± rates the Lund vector meson suppression parameterV/(V+P)S has been determined.
Errors are statistical only.
Errors are statistical only.
Errors are statistical only.
None
No description provided.
No description provided.
No description provided.
We have made a precise measurement of the cross section for e + e − →Z 0 →hadrons with the L3 detector at LEP, covering the s range from 88.28 to 95.04 GeV. From a fit to the Z 0 mass, total width, and the hadronic cross section to be M Z 0 =91.160 ± 0.024 (experiment) ±0.030(LEP) GeV, Γ Z 0 =2.539±0.054 GeV, and σ h ( M Z 0 )=29.5±0.7 nb. We also used the fit to the Z 0 peak cross section and the width todetermine Γ invisible =0.548±0.029 GeV, which corresponds to 3.29±0.17 species of light neutrinos. The possibility of four or more neutrino flavors is thus ruled out at the 4σ confidence level.
No description provided.
Total hadronic cross section.
More extensive and precise results are reported on the parameters of Z decay. On the basis of 20 000 Z decays collected with the ALEPH detector at LEP we find M z =91.182±0.026 (exp.) ±0.030 (beam) GeV, Γ z =2.541±0.056 GeV and σ had 0 =41.4±0.8 nb. The partial widths for the hadronic and leptonic channels are Γ had =1804±44 MeV, Γ e + e − =82.1±3.4 MeV, Γ μ + μ − =87.9±6.0 MeV and Γ τ + τ − =86.1±5.6 MeV, in good agreement with the standard model. On the basis of the average leptonic width Γ ℓ + ℓ − =83.9±2.2 MeV, the effective weak mixing angle is found to be sin 2 θ w ( M z )=0.231±0.008. Usin g the partial widths calculated in the standard model, the number of light neutrino families is N ν =3.01±0.15 (exp.)±0.05 (theor.).
Penetrating charged particle track selection.
Calorimeter selection.
Average cross section.
We present results on a high statistics study of the nucleon structure functions F 2 ( x , Q 2 ) and R = σ L / σ T measured in deep inelastic scattering of muons on a deuterium target. The analysis is based on 8×10 5 events after all cuts, recorded at beam energies of 120, 200 and 280 GeV in the kinematic range 0.06⩽ × ⩽0.80 and 8GeV 2 ⩽ Q 2 ⩽260GeV 2 . Scaling violations observed in the data are in agreement with predictions of perturbative QCD and allow to determine the QCD mass scale parameter Λ.
No description provided.
R=SIG(L)/SIG(T) is taken to be zero.
R=SIG(L)/SIG(T) is taken to be zero.
We have measured inclusive distributions for charged particles in hadronic decays of the Z boson. The variables chosen for study were charged-particle multiplicity, scaled momentum, and momenta transverse to the sphericity axes. The distributions have been corrected for detector effects and are compared with data from e+e− annihilation at lower energies and with the predictions of several QCD-based models. The data are in reasonable agreement with expectations.
Mean corrected charged particle multiplicity.
Corrected charged particle X distributions. Errors are statistical and systematic combined.
Corrected charged particle PTIN distributions. Errors are statistical and systematic combined.
The cross-sections and the forward-backward charge asymmetries of muon and tau pairs produced ine+e− collisions at\(\sqrt s= 35 GeV\) have been measured by the JADE Collaboration. The cross-sections,\(\sigma _\mu(\sqrt s= GeV) = 69.79 \pm 1.35 \pm 1.40 pb\) and\(\sigma _\mu(\sqrt s= GeV) = 71.72 \pm 1.48 \pm 1.61 pb\), are in agreement with the QED α3 prediction. The charge asymmetries areAμ=−(9.9±1.5±0.5)% andAτ=−(8.1±2.0±0.6)% in agreement with the value −9.2% predicted by the standard model, usingMZ=91.0 GeV and sin2θW=0.230.
No description provided.
No description provided.
The production of charged kaon pairs in two-photon interactions has been studied with the ARGUS detector and the topological cross section has been measured. The γγ-widths and interference parameters have been determined for the tensor mesonsf2 (1270),a2 (1318) andf′2 (1525). The helicity structure assumed for the continuum contribution has a significant effect on the result. Upper limits have been obtained for the γγ-widths of the glueball candidate statesf2 (1720) andX (2230).
Data read from graph.. Errors are the square roots of the number of events.
Cross section allowing for spin components JM = 22,20,00. Data read from graph.. Additional overall systematic error 8.4%.
Cross section allowing for spin components JM = 22,00. Data read from graph.. Additional overall systematic error 8.4%.