The reaction e p→e'p π 0 has been measured at W =2.55 GeV a fixed electron scattering angle of 10.3°. Two magnetic spectrometers and a lead glass hodoscope were used to detect all four final state particles. Electroproduction cross sections in the t range −0.15 to −1.4 (GeV/ c ) 2 at q 2 = −0.22, −0.55 and −0.85 (GeV/ c ) 2 are presented. Above | t |=0.6 (GeV/ c ) 2 the cross sections are considerably smaller than those for photoproduction.
NUMERICAL VALUES MEASURED FROM GRAPH IN PREPRINT BY TDBW.
Cross sections for γd and γn interactions and photoproduction of ϱ 0 and ω are studied at 4.3 GeV, using a linearly polarized photon beam in a deuterium bubble chamber. We find that σ T (γ n ) ⋍ σ T (γ p ) within about 5% and that the γn average charge multiplicity is lower than γp by 0.42±0.09. About 4000 ϱ 0 events and 70 coherent ω events are observed. We present total and differential cross sections for both xoherent and incoherent ϱ 0 production on deuterium, as well as decay angular distributions and density-matrix elements. We find that the t -channel isospin-one exchange amplitude in γ N → ϱ 0 N (e.g. A 2 exchange) is at most 5–13% of the dominant isoscalar amplituds. The ϱ 0 production mechanism is dominantly s -channel helicity-conserving (SHC) on both neutrons and protons. We find that relative to the SHC amplitudes, the single and double helicity-flip amplitudes at the γϱ 0 vertex are of the order of 10–15% for | t | > 0.25 GeV 2 , and have the same sign on both nucleons. This shows that helicity-flip is mainly due to isoscalar exchanges. The ratio of ω to ϱ 0 coherent forward cross sections is found to be 0.16±0.04. The natural-parity exchange part of γ N → ω N is strongly dominated by isoscalar exchanges, and the magnitude of the isovector-exchange is consistent with zero.
TOPOLOGICAL CROSS SECTIONS AND AVERAGE CHARGE MULTIPLICITIES GIVEN IN TABLE 1.
'PARAMETRIZATION'.
No description provided.
The s and t dependence of incoherent ψ(3100) photoproduction from deuterium has been measured at the Stanford Linear Accelerator Center. ψ(3700) photoproduction and ψ(3100) photoproduction from hydrogen have also been measured.
No description provided.
No description provided.
No description provided.
At the Bonn 2.5 GeV synchrotron the differential photoproduction cross section d σ /d t of φ mesons has been measured at a photon energy of 2.0 GeV at fibe different t values between 0.23 < | t | < 0.73 (GeV/ c ) 2 . The φ meson was detected by magnetic momentum analysis of both charged decay K mesons and by a time of flight and angle measurement of the coincident recoil proton. We found an exponential behaviour for the t dependence of the cross section. The measured slope of the exponential decrease was b = (4.01 ± 0.23) (GeV/ c −2 . This result, combined with previous measurements at higher energies, implies that the slope of the pomeron trajectory is compatible with zero. In addition the experiment yielded a value of the φ mass, m φ = (1019.4 ± 0.8) MeV and a value of the φ width, Γ = (4.4 ± 0.4) MeV.
No description provided.
An optical spark chamber and neutron time-of-flight spectrometer experiment studied the reaction π−p→π+π−n at incident pion momentum of 4.5 GeVc in the mass region of the f0 meson. Analysis of the data shows no evidence for anomalous structure in the f0 mass spectrum. The two-pion differential cross section in the f0 region is consistent with Wolf's one-pion-exchange model for momentum transfers (squared) −t≲0.7 (GeVc))2. The differential cross section is larger than that predicted at high momentum transfer, and may be attributed to natural-parity-exchange contributions as evidenced in the f0 decay distribution.
No description provided.
DIPION PRODUCTION CROSS SECTION NORMALIZED AT LOW -T TO A WOLF-MODEL F CROSS SECTION OF 400 MUB.
For the reaction π + p → ωΔ ++ data on the total cross section ( σ = 61 ± 12 μ b), differential cross sections, spin density matrix elements and statistical tensor elements are given. We observe natural and unnatural parity exchange contributions to the total cross section. We note that the value of ϱ 00 is not zero and in the helicity frame exhibits a dip at t ≈ −0.25 (GeV/ c ) 2 . A qualitative theoretical discussion of our results is presented.
CORRECTED FOR BACKGROUND, RESONANCE TAILS AND UNSEEN OMEGA DECAY MODES.
NORMALIZED TO THE TOTAL CROSS SECTION. SOME BACKGROUND IS PRESENT.
NORMALIZED TO THE TOTAL CROSS SECTION. SOME BACKGROUND IS PRESENT.
Angular distributions of proton-proton elastic scattering have been measured for incident beam momenta of 10.0, 12.0, 14.2 and 24.0 GeV/ c over a range of lab scattering angles from 12 to 152 mrad. This is equivalent to a range of four-momentum transfer squared from about 0.1 to 6.7 GeV 2 at the highest momentum. Nucleon resonance production in the two-body reaction p + p → p + X has been studied at 24.0 GeV/ c incident momentum from 13.5 to 112 mrad by measuring the proton momentum spectra from the elastic peak down to a momentum corresponding to a missing mass of about 2.6 GeV. The new data are compared with previous results and theoretical models.
ESTIMATED 8 PCT RANDOM ERROR.
ESTIMATED 8 PCT RANDOM ERROR.
ESTIMATED 8 PCT RANDOM ERROR.
Measurements of proton-deuteron scattering have been performed using an incident 24.0 GeV/ c proton beam. Momentum-loss spectra of forward-scattered protons were measured by a single-arm spectrometer over a range of proton angles from 13 to 107 mr. The contributions to the proton spectra of single and double scattering can be separated experimentally, thus allowing estimates of proton-neutron elastic cross sections to be deduced from the data over a range of four-momentum transfer squared, |t| 5.8 GeV 2 . Elastic p - d scattering, in which the proton and deuteron were detected in coincidence, has also been measured over a range of | t | from 0.6 to 1.8 GeV 2 .
No description provided.
EXTRACTED FROM SINGLE AND DOUBLE PEAK DEUTERIUM DATA BY THE GLAUBER METHOD WITH FERMI MOTION CORRECTIONS.
Lambda production is studied in K − p interactions at 10.1 GeV/ c , where the dominant reaction is K − p → Λ + pions. General characteristics such as the distributions of the double differential cross section in the lab system, of the variable x = p L ∗ p max ∗ , of p ⊥ 2 and of the missing mass to the lambda are presented. Total cross sections for Λ production and for the various channels are given. Differential cross sections d σ d t , d σ d t′ and d σ d u′ are presented. Forward and backward peaks are observed in the d σ d t′ and d σ d u′ distributions, respectively. It is found that the exponential slope of these distributions decreases with increasing missing mass to the lambda and, for d σ d t′ , also for increasing multiplicity in the final state. The polarization of the lambdas is studied as a function of multiplicity, p L ∗ , (Λπ ± ) effective mass, t ′ and u ′. The forward lambdas show
No description provided.
POSSIBLE FORWARD DIP.
It is found in the reactions π ± p →( π ± π + π − )p, believed to be dominated by diffraction dissociation, that the d σ d t′ distributions show a “cross-over” effect at t ′ ≈ 0.15, similar to the effect observed in elastic scattering. This gives evidence for the interference of ( ϱ 0 , B 0 ,…)-exchanges with ( P , f 0 , …) -exchanges in pion diffraction dissociation reactions. No such evidence is found for baryon dissociation, π ± p → π ± (p π + π − ), at the same energy.
No description provided.
No description provided.
No description provided.