Inclusive cross sections of η production by e + e - annihilation for c.m. energies between 4.0 and 5.0 GeV are presented. The η production is shown to be correlated with the production of a weakly decaying particle, indicating that its main source is F production. At the 4.42 GeV resonance it is correlated with a low energy photon, suggesting F F ∗ or F ∗ F ∗ production. A mass determination of the F is made at 4.42 GeV using the F → ηπ decay channel.
NUMERICAL VALUES MEASURED FROM GRAPH IN PREPRINT. A CHARM MODEL (METHOD 2) GAVE CONSISTENT RESULTS FOR BACKGROUND SEPARATION.
Inclusive production of ifπ ± , K ± and p has been studied near charm threshold for c.m. energies between 3.6 and 5.2 GeV. Differential and scaling cross sections together with particle multiplicities have been determinated. By comparing data below and above charm threshold the charm contribution to if π ± and K ± production has been extracted. A comparison has been made between inclusice p production and inelastic electron-proton scattering. To study differences between three-gluon annihilation and two-quark production of the spectra from J/ decay and from non-resonant production at 3.6 GeV has been compared.
No description provided.
No description provided.
No description provided.
Inclusive momentum and energy spectra of neutral and charged D-mesons produced in e + e − annihilation at energies near 7 GeV are presented. The slope of the energy spectrum is similar to the charged pion spectrum at the same energy. The inclusive cross section σ(e + e − → D or D + anything) at 7 GeV is 4.8±1.3 nb.
No description provided.
No description provided.
SCALING VARIABLE IS X(P=3,DEF=2*E(P=3)/SQRT(S)) > 0.54.
We observe evidence for a secon narrow resonance in the reation e + e − → hadrons at √s around 10 GeV using the DASP detector at the DORIS storage ring. The mass of the resonance is (10.01 ± 0.02) GeV; its width is in agreement with the storage ring resolution of ≈ 9 MeV. From the integrated cross section, an electronic width of Λ ee = (0.35 ± 0.14) KeV is derived.
No description provided.
We observe a narrow resonance in the reaction e + e − → hadrons using the DASP detector at the DORIS storage ring. The mass is found to be (9.46 ± 0.01) GeV and the observed width is compatible with the storage ring resolution of ±8 MeV. The energy-integrated cross section results in an electronic width Γ ee = (1.3 ± 0.4) keV.
VISIBLE HADRONIC TOTAL CROSS SECTION.
The total cross section for e + e − annihilation into hadronic final states between 3.6 and 5.2 GeV was measured by the nonmagnetic inner detector of DASP, which has similar trigger and detection efficiencies for photons and charged particles. The measured difference in R = σ had / σμμ between 3.6 GeV and 5.2 GeV is ΔR = 2.1 ± 0.3. We observe three peaks at cm energies of 4.04, 4.16 and 4.417 GeV, the parameters of which, when interpreted as resonances, are given.
EXCLUDING CONTRIBUTION OF TAU HEAVY LEPTON.
INCLUDING CONTRIBUTION OF TAU HEAVY LEPTON.
An experiment using the PLUTO detector has observed the formation of a narrow, high mass, resonance in e + e − annihilations at the DORIS storage ring. The mass is determined to be 9.46±0.01 GeV which is consistent with that of the Upsilon. The gaussian width σ is observed as 8±1 MeV and is equal to the DORIS energy resolution. This suggests that the resonance is a bound state of a new heavy quark-antiquark pair. An electronic width Γ ee =1.3±0.4 keV was obtained. In standard theoretical models, this favors a quark charge assignment of 1 3 .
No description provided.
The ϒ′ state has been observed as a narrow resonance at M ( ϒ ′) = 10.02 ± 0.02 GeV in e + e − annihilations, using a NaI and lead-glass detector in the DORIS storage ring at DESY. The ratio Г ee Г had /Г tot of electronic, hadronic, and total widths has been measured to be 0.32 ± 0.13 keV. The parameters of the Г particle have also been determined to be/ M (Г)
The data renormalized to the expected level of continuum based on the ratioof R=sigma(hadrons)/sigma(mu+mu-) = 4.7 at sqrt(s) = 5 GeV.
The data renormalized to the expected level of continuum based on the ratioof R=sigma(hadrons)/sigma(mu+mu-) = 4.7 at sqrt(s) = 5 GeV.
Annihilation of e + e − into final states with a single electron has been studied with the PLUTO detector at the DORIS storage ring at CMS energies from 3.6 to 5 GeV. In the sample of 4-prong events without any detected photon we observe 21 events which we assign to the reaction e + e − → τ + τ − → νν e + νϱ 0 π . We obtain a branching ratio for τ + → νϱ 0 π + of 0.050 ± 0.015 with an overall systematic uncertainty of 30%. The data are consistent with the ϱπ coming from an A 1 meson.
No description provided.
The multiplicity distribution of inclusive electron events above 4 GeV cm energy shows two distinct classes of events: two prong no photon and high multiplicity events. If the high multiplicity events are attributed to the semi-leptonic decay of charmed particles the two prong no photon events must come from the weak decay of a different type of particle. The charged K to π ratio was measured for these events. The average number of charged kaons is 0.07 ± 0.06 per two prong event and 0.90 ± 0.18 per multiprong event. Thus the weak current responsible for the low multiplicity events has a small coupling to strange particles.
NUMBER OF CHARGED PARTICLES OBSERVED .EQ. 2.
NUMBER OF CHARGED PARTICLES OBSERVED .GE. 3.