First measurement of the absorption of $^{3}\overline{\rm He}$ nuclei in matter and impact on their propagation in the galaxy

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Nature Phys. 19 (2023) 61-71, 2023.
Inspire Record 2026264 DOI 10.17182/hepdata.133480

In our Galaxy, light antinuclei composed of antiprotons and antineutrons can be produced through high-energy cosmic-ray collisions with the interstellar medium or could also originate from the annihilation of dark-matter particles that have not yet been discovered. On Earth, the only way to produce and study antinuclei with high precision is to create them at high-energy particle accelerators. Although the properties of elementary antiparticles have been studied in detail, the knowledge of the interaction of light antinuclei with matter is limited. We determine the disappearance probability of $^{3}\overline{\rm He}$ when it encounters matter particles and annihilates or disintegrates within the ALICE detector at the Large Hadron Collider. We extract the inelastic interaction cross section, which is then used as input to calculations of the transparency of our Galaxy to the propagation of $^{3}\overline{\rm He}$ stemming from dark-matter annihilation and cosmic-ray interactions within the interstellar medium. For a specific dark-matter profile, we estimate a transparency of about 50%, whereas it varies with increasing $^{3}\overline{\rm He}$ momentum from 25% to 90% for cosmic-ray sources. The results indicate that $^{3}\overline{\rm He}$ nuclei can travel long distances in the Galaxy, and can be used to study cosmic-ray interactions and dark-matter annihilation.

21 data tables

Raw primary antihelium3-to-helium3 ratio as a function of the momentum p_primary.

Raw primary antihelium3-to-helium3 ratio from Geant4-based MC simulations as a function of the momentum p_primary with default sigma_inel(3Hebar).

Raw primary antihelium3-to-helium3 ratio from Geant4-based MC simulations as a function of the momentum p_primary with sigma_inel(3Hebar)x0.5.

More…

Measurement of the production cross-sections of $\pi^\pm$ in p-C and $\pi^\pm$-C interactions at 12 GeV/c

The HARP collaboration Catanesi, M.G. ; Radicioni, E. ; Edgecock, R. ; et al.
Astropart.Phys. 29 (2008) 257-281, 2008.
Inspire Record 778842 DOI 10.17182/hepdata.50415

The results of the measurements of the double-differential production cross-sections of pions in p-C and $\pi^\pm$-C interactions using the forward spectrometer of the HARP experiment are presented. The incident particles are 12 GeV/c protons and charged pions directed onto a carbon target with a thickness of 5% of a nuclear interaction length. For p-C interactions the analysis is performed using 100035 reconstructed secondary tracks, while the corresponding numbers of tracks for $\pi^-$-C and $\pi^+$-C analyses are 106534 and 10122 respectively. Cross-section results are presented in the kinematic range 0.5 GeV/c $\leq p_{\pi} <$ 8 GeV/c and 30 mrad $\leq \theta_{\pi} <$ 240 mrad in the laboratory frame. The measured cross-sections have a direct impact on the precise calculation of atmospheric neutrino fluxes and on the improved reliability of extensive air shower simulations by reducing the uncertainties of hadronic interaction models in the low energy range.

19 data tables

Double-differential cross section for 12 GeV proton-carbon interactions with the scattered polar angle 30 to 60 mrad.

Double-differential cross section for 12 GeV proton-carbon interactions with the scattered polar angle 60 to 90 mrad.

Double-differential cross section for 12 GeV proton-carbon interactions with the scattered polar angle 90 to 120 mrad.

More…