Data are reported on the momentum distributions of Λ, Λ (1520), φ (1020), Λ and p , inclusively produced between 1° and 2° with respect to one of the primary proton beams at the CERN Intersecting Storage Rings. In addition, the decay angular distribution of the Λ(1520), the ratio of the cross sections for the production of Σ − (1385) and Σ + (1385) and the ratios among different charge states of the pairs Λπ , Λ K, Δ ++ (1232) π and ππ have been measured. These data are confronted with current ideas on fragmentation.
In pp collisions at √ s = 44.7 and 62.3 GeV, where each proton fragments into at least one low- p T, high- x meson or baryon, no correlations between the particle momenta are found for ππ , π K, KK, and p π pairs. The ππ data show a preference for the formation of electrically neutral ππ systems. The KK data show the influence of strangeness conservation. For pp and pΛ final states, the momentum dependence of the correlation ratio R can be described by the scaling variable z = (1 − x 1 )(1 − x 2 ). Small deviations from factorization are discussed.
The ratios of high p T charged kaon to pion production cross sections at √ s = 45 and 62 GeV are presented. The values of the K ± π ± ratios are essentially independent of both √ s and x T = 2p T √s and are compatible with a strangeness suppression factor λ = 0.55. By contrast, the K − π − values fall with x T suggesting a gluonic origin of K − . QCD calculations agrees with the measurements.
We report on measurements of charged pion production cross sections at θ ≅ 50°, p T ≅ 3–9 GeV / c and √ s = 45 GeV , taken with the Split Field Magnet Detector at the CERN Intersecting Storage Rings (ISR). Together with previous data at √ s = 62 GeV , this allows the calculation of the exponent n assuming a power law dependence p n T . Values of n ≈ 8 are found at low x T = 2 p T /√ s which drop to about 7 at x T ≈ 0.3. The measured values of π + /π − rise with x T and approach ≈ 2 at x T ≈ 0.3. A first-order QCD calculations is reasonably consistent with the data.
Events are analyzed in which a high transverse momentum proton was produced at polar angles of 10°, 20° and 45°. The experiment was performed with the Split Field Magnet detector at the CERN ISR at\(\sqrt s \)=62 GeV. A 4-jet structure of these events is found [1]. The measured charge structure of spectator jets is compatible with proton production from hard diquark scattering. This is supported by a study of baryon number compensation in the towards jets. The observed charge compensation in the towards jets suggests dominance of hard (ud) scattering. Evidence forΔ++ production at high transverse momentum indicates the presence of an additional (uu) scattering component. The properties of the recoiling away jets are compatible with the fragmentation of a valence quark and/or of a gluon as in the case of meson triggers.
None
The collective behavior of K$^0_\mathrm{S}$ and $\Lambda/\bar{\Lambda}$ strange hadrons is studied by measuring the elliptic azimuthal anisotropy ($v_2$) using the scalar-product and multiparticle correlation methods. Proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV and lead-lead (PbPb) collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV collected by the CMS experiment at the LHC are investigated. Nonflow effects in the pPb collisions are studied by using a subevent cumulant analysis and by excluding events where a jet with transverse momentum greater than 20\GeV is present. The strange hadron $v_2$ values extracted in \pPb collisions via the four- and six-particle correlation method are found to be nearly identical, suggesting the collective behavior. Comparisons of the pPb and PbPb results for both strange hadrons and charged particles illustrate how event-by-event flow fluctuations depend on the system size.
Azimuthal angle (Delta phi) correlations are presented for a broad range of transverse momentum (0.4 < pT < 10 GeV/c) and centrality (0-92%) selections for charged hadrons from di-jets in Au+Au collisions at sqrt(s_NN) = 200 GeV. With increasing pT, the away-side Delta phi distribution evolves from a broad and relatively flat shape to a concave shape, then to a convex shape. Comparisons to p+p data suggest that the away-side distribution can be divided into a partially suppressed head region centered at Delta phi ~ \pi, and an enhanced shoulder region centered at Delta phi ~ \pi \pm 1:1. The pT spectrum for the associated hadrons in the head region softens toward central collisions. The spectral slope for the shoulder region is independent of centrality and trigger pT . The properties of the near-side distributions are also modified relative to those in p + p collisions, reflected by the broadening of the jet shape in Delta phi and Delta eta, and an enhancement of the per-trigger yield. However, these modifications seem to be limited to pT < 4 GeV/c, above which both the dihadron pair shape and per-trigger yield become similar to p + p collisions. These observations suggest that both the away- and near-side distributions contain a jet fragmentation component which dominates for pT \ge 5GeV and a medium-induced component which is important for pT \le 4 GeV/c. We also quantify the role of jets at intermediate and low pT through the yield of jet-induced pairs in comparison to binary scaled p + p pair yield. The yield of jet-induced pairs is suppressed at high pair proxy energy (sum of the pT magnitudes of the two hadrons) and is enhanced at low pair proxy energy. The former is consistent with jet quenching/ the latter is consistent with the enhancement of soft hadron pairs due to transport of lost energy to lower pT.
RHS versus $p^b_T$ for p + p collisions for four trigger selections.
RHS versus $p^b_T$ for Au + Au collisions for four trigger selections.
The TPC/Two-Gamma Collaboration has measured the inclusive cross section for production of charmed D ∗± mesons in photon-photon collisions. The reaction utilized was e + e - →e + e - D ∗± X, with D ∗± →D O π +- , D O →K -+ π ± , and either zero or one outgoing e ± detected. The result, σ(e + e - → e + e - D ∗± X) = 74±26±19 pb , is in agreement with the quark parton mo del prediction for e + e - → e + e - c c , combined with a Lund model for the hadronization of the charmed quarks.
The cross section for K + meson production in collisions of 36 Ar ions on a 48 Ti target has been measured at an incident energy of 92 MeV per nucleon. A description of the experimental set-up is given. Twelve events attributed to monoenergetic muons following the decay of stopped kaons have been identified. From these events, one infers a production cross section of 240 pb. Data are briefly discussed.