Lambda production is studied in K − p interactions at 10.1 GeV/ c , where the dominant reaction is K − p → Λ + pions. General characteristics such as the distributions of the double differential cross section in the lab system, of the variable x = p L ∗ p max ∗ , of p ⊥ 2 and of the missing mass to the lambda are presented. Total cross sections for Λ production and for the various channels are given. Differential cross sections d σ d t , d σ d t′ and d σ d u′ are presented. Forward and backward peaks are observed in the d σ d t′ and d σ d u′ distributions, respectively. It is found that the exponential slope of these distributions decreases with increasing missing mass to the lambda and, for d σ d t′ , also for increasing multiplicity in the final state. The polarization of the lambdas is studied as a function of multiplicity, p L ∗ , (Λπ ± ) effective mass, t ′ and u ′. The forward lambdas show
No description provided.
POSSIBLE FORWARD DIP.
Final states π − Σ + , π + Σ − , π o Λ and ηΛ were studied for K − p reactions at 3.95 GeV/ c . Cross sections, angular distributions and polarizations are presented. Data for π − Σ + and π o Λ production are compared to the line-reversed πp reactions at the same beam momentum. Baryon-exchange peaks are presented for the Σ + π − , Σ − π + and Λπ o final states.
No description provided.
No description provided.
No description provided.
We present the results on total channel cross-sections obtained in the Saclay 180 l HBC exposed to a separated K− beam at Nimrod. The cross-sections for each channel are given at 13 incident K− momenta between 1.26 and 1.84 GeV/c.
No description provided.