We present a measurement of the isolated direct photon cross section in p-pbar collisions at sqrt(s) = 1.8 TeV and |eta| < 0.9 using data collected between 1994 and 1995 by the Collider Detector at Fermilab (CDF). The measurement is based on events where the photon converts into an electron-positron pair in the material of the inner detector, resulting in a two-track event signature. To remove pi0 -> gamma gamma and eta -> gamma gamma events we use a new background subtraction technique which takes advantage of the tracking information available in a photon conversion event. We find that the shape of the cross section as a function of pT is poorly described by next-to-leading-order QCD predictions, but agrees with previous CDF measurements.
Axis error includes +- 28/18 contribution (Correlated systematic error included in quadrature in the systematic errors.).
We report a measurement of the ttbar production cross section using dilepton events with jets and missing transverse energy in ppbar collisions at a center-of-mass energy of 1.96 TeV. Using a 197 +/- 12 pb-1 data sample recorded by the upgraded Collider Detector at Fermilab, we use two complementary techniques to select candidate events. We compare the number of observed events and selected kinematical distributions with the predictions of the Standard Model and find good agreement. The combined result of the two techniques yields a ttbar production cross section of 7.0 +2.4/-2.1(stat.) +1.6/-1.1(syst.) +/- 0.4(lum.) pb.
Measured values of cross section for a top mass of 175 GeV. The second DSYS error is the uncertainty in the luminosity.
The cross section for anti-deuteron photoproduction is measured at HERA at a mean centre-of-mass energy of W_{\gamma p} = 200 GeV in the range 0.2 < p_T/M < 0.7 and |y| < 0.4, where M, p_T and y are the mass, transverse momentum and rapidity in the laboratory frame of the anti-deuteron, respectively. The numbers of anti-deuterons per event are found to be similar in photoproduction to those in central proton-proton collisions at the CERN ISR but much lower than those in central Au-Au collisions at RHIC. The coalescence parameter B_2, which characterizes the likelihood of anti-deuteron production, is measured in photoproduction to be 0.010 \pm 0.002 \pm 0.001, which is much higher than in Au-Au collisions at a similar nucleon-nucleon centre-of-mass energy. No significant production of particles heavier than deuterons is observed and upper limits are set on the photoproduction cross sections for such particles.
The measured value of the invariant DEUTBAR production cross section. The data are normalized to a total photoproduction cross section of (164 +- 11 MUB).
The measured and weak decay corrected values of the DEUTBAR to PBAR cross sections.
Flavour inclusive, udsc and b fragmentation functions in unbiased jets, and flavour inclusive, udsc, b and gluon fragmentation functions in biased jets are measured in e+e- annihilations from data collected at centre-of-mass energies of 91.2, and 183-209 GeV with the OPAL detector at LEP. The unbiased jets are defined by hemispheres of inclusive hadronic events, while the biased jet measurements are based on three-jet events selected with jet algorithms. Several methods are employed to extract the fragmentation functions over a wide range of scales. Possible biases are studied in the results are obtained. The fragmentation functions are compared to results from lower energy e+e- experiments and with earlier LEP measurements and are found to be consistent. Scaling violations are observed and are found to be stronger for the fragmentation functions of gluon jets than for those of quarks. The measured fragmentation functions are compared to three recent theoretical next-to-leading order calculations and to the predictions of three Monte Carlo event generators. While the Monte Carlo models are in good agreement with the data, the theoretical predictions fail to describe the full set of results, in particular the b and gluon jet measurements.
The udsc jet fragmentation function in bins of $x_{\rm E}$ and scale. The scale denotes $Q_{\rm jet}$ for the biased jets and is given by the intervals, while it denotes $\sqrt{s}/2$ for the unbiased jets and is given by the single values. These data are displayed in Fig.7.
The b jet fragmentation function in bins of $x_{\rm E}$ and scale. The scale denotes $Q_{\rm jet}$ for the biased jets and is given by the intervals, while it denotes $\sqrt{s}/2$ for the unbiased jets and is given by the single values. These data are displayed in Fig. 8. In the region 0.48 $<x_{\rm E}<$ 0.90 and $Q_{\rm jet}=$ 30-70 GeV, no measurement was possible due to low statistics.
The gluon jet fragmentation functions in bins of $x_{\rm E}$ and scale $Q_{\rm jet}$ obtained from the biased jets using the b-tag method (BT). These data are displayed in Fig. 9. In the region 0.48 $<x_{\rm E}<$ 0.90 and $Q_{\rm jet}=$ 30-42 GeV for the b-tag method, no measurement was possible due to low statistics.
Using the CLEO detector at the Cornell Electron-positron Storage Ring, we have measured the scaled momentum spectra, dsigma/dx_p, and the inclusive production cross sections of the charm mesons D+, D0, D*+, and D*0 in e+e- annihilation at about 10.5 GeV center of mass energy, excluding the decay products of B mesons. The statistical accuracy and momentum resolution are superior to previous measurements at this energy.
Total cross sections for D production from the various decay modes. The data are fully corrected for detection efficiency and decay branching ratios. The second DSYS error is the error due to the uncertainty in the branching ratio.
Differential cross sections for D+ production from the (K- PI+ PI+) decay mode.
Differential cross sections for D0 production from the (K- PI+) decay mode.
Triple differential dijet cross sections in e^\pm p interactions are presented in the region of photon virtualities 2<Q^2<80GeV^2, inelasticities 0.1<y<0.85, jet transverse energies E_T1>7GeV, E_T2>5GeV, and pseudorapidities -2.5 < eta_1^*, eta_2^* <0. The measurements are made in the gamma^* p centre-of-mass frame, using an integrated luminosity of 57pb^-1. The data are compared with NLO QCD calculations and LO Monte Carlo programs with and without a resolved virtual photon contribution. NLO QCD calculations fail to describe the region of low Q^2 and low jet transverse energies, in contrast to a LO Monte Carlo generator which includes direct and resolved photon interactions with both transversely and longitudinally polarised photons. Initial and final state parton showers are tested as a mechanism for including higher order QCD effects in low E_T jet production.
Triple differential dijet cross sections as a function of Q**2, ET and X(C=GAMMA).
Triple differential dijet cross sections as a function of Q**2, ET and X(C=GAMMA).
Triple differential dijet cross sections as a function of Q**2, ET and X(C=GAMMA).
The hadronic final states observed with the ALEPH detector at LEP in ${\rm e}^ + {\rm e}^-$ annihilation
Mean charged particle multiplicities at different c.m. energies.
XP distribution at c.m. energy 133.0 GeV.
XP distribution at c.m. energy 161.0 GeV.
Elements of the spin density matrix for W bosons in e+e- -> W+W- -> qqln events are measured from data recorded by the OPAL detector at LEP. This information is used calculate polarised differential cross-sections and to search for CP-violating effects. Results are presented for W bosons produced in e+e- collisions with centre-of-mass energies between 183 GeV and 209 GeV. The average fraction of W bosons that are longitudinally polarised is found to be (23.9 +- 2.1 +- 1.1)% compared to a Standard Model prediction of (23.9 +- 0.1)%. All results are consistent with CP conservation.
The fraction of longitudinal polarization for leptonically and hadronically decaying W bosons. The average values for all the centre of mass energies and for both lepton and hadron decay combined are also given.
The luminosity weighted average over all the centre of mass energies of the diagonal elements of the RHO++ and RHO-- SDM as a function of the cosine of the angle of the W- boson for the leptonic decay channel.
The luminosity weighted average over all the centre of mass energies of the diagonal element of the RHO00 SDM as a function of the cosine of the angle of the W- boson for both leptonic and hadronic decay channels, and combined.
We present improved measurements of the differential production rates of stable charged particles in hadronic Z0 decays, and of charged pions, kaons and protons identified over a wide momentum range using the SLD Cherenkov Ring Imaging Detector. In addition to flavor-inclusive Z0 decays, measurements are made for Z0 decays into light (u, d, s), c and b primary flavors, selected using the upgraded Vertex Detector. Large differences between the flavors are observed that are qualitatively consistent with expectations based upon previously measured production and decay properties of heavy hadrons. These results are used to test the predictions of QCD in the Modified Leading Logarithm Approximation, with the ansatz of Local Parton-Hadron Duality, and the predictions of three models of the hadronization process. The light-flavor results provide improved tests of these predictions, as they do not include the contribution of heavy-hadron production and decay; the heavy-flavor results provide complementary model tests. In addition we have compared hadron and antihadron production in light quark (as opposed to antiquark) jets. Differences are observed at high momentum for all three charged hadron species, providing direct probes of leading particle effects, and stringent constraints on models.
Production rates of all stable charged particles. The statistical and systematic errors are shown separately for the momentum distribution. They are combined in quadrature for the other two distributions. The first DSYS error is due tothe uncertainty in the track finding efficiency and the second DSYS error is th e rest of the systematic error.
The charged pion fraction and differential production rate per hadronic Z0 decay.
The charged kaon fraction and differential production rate per hadronic Z0 decay.
Cross sections for the production of two isolated muons up to high di-muon masses are measured in ep collisions at HERA with the H1 detector in a data sample corresponding to an integrated luminosity of 71 pb^-1 at a centre of mass energy of sqrt{s} = 319 GeV. The results are in good agreement with Standard Model predictions, the dominant process being photon-photon interactions. Additional muons or electrons are searched for in events with two high transverse momentum muons using the full data sample corresponding to 114 pb^-1, where data at sqrt{s} = 301 GeV and sqrt{s} = 319 GeV are combined. Both the di-lepton sample and the tri-lepton sample agree well with the predictions.
Integrated cross sections for electroweak muon pair production in the evaluated phase space. The cross section has the di-muon contributions from UPSILON, TAU-PAIR and QUARK-QUARKBAR decay subtracted.
Cross section for the production of two muons in e p interactions as a function of the di-muon mass. This data sample includes di-muons from UPSILON, TAU-PAIR and QUARK-QUARKBAR decays.
Cross section for the production of two muons as a function of the muon transverse momentum (two entries per event).