A measurement of the $t$-channel single-top-quark and single-top-antiquark production cross-sections in the lepton+je ts channel is presented, using 3.2 fb$^{-1}$ of proton--proton collision data at a centre-of-mass energy of 13 TeV, recorded with the ATLAS detector at the LHC in 2015. Events are selected by requiring one charged lepton (electron or muon), missing transverse momentum, and two jets with high transverse momentum, exactly one of which is required to be $b$-tagged. Using a binned maximum-likelihood fit to the discriminant distribution of a neural network, the cross-sections are determined to be $\sigma(tq) = 156 \pm 5 \, (\mathrm{stat.}) \pm 27 \, (\mathrm{syst.}) \pm 3\,(\mathrm{lumi.})$ pb for single top-quark production and $\sigma(\bar{t}q) = 91 \pm 4 \, (\mathrm{stat.}) \pm 18 \, (\mathrm{syst.}) \pm 2\,(\mathrm{lumi.})$ pb for single top-antiquark production, assuming a top-quark mass of 172.5 GeV. The cross-section ratio is measured to be $R_t = \sigma(tq)/\sigma(\bar{t}q) = 1.72 \pm 0.09 \, (\mathrm{stat.}) \pm 0.18 \, (\mathrm{syst.})$.
Predicted and observed event yields for the signal region. The quoted uncertainties include uncertainties in the theoretical cross-sections, in the number of multijet events, and the statistical uncertainties. The event yield of the $W^+ + $jets process in the $\ell^-$ channel is reported to be $<1$ in the paper. To provide a numerical value for this table in HEPdata, the yield is approximated with $1\pm 1$. The same is done for the event yield of the $W^- + $jets process in the $\ell^+$ channel.
Estimated scale factors, $\hat{\beta}$, and number of events, $\hat{\nu}=\hat{\beta}\cdot\nu$, for the $\ell^+$ and $\ell^-$ channel from the minimisation of the likelihood function. The quoted uncertainties in $\hat{\beta}$ and $\hat{\nu}$ include the statistical uncertainty and the uncertainties from the constraints on the background normalisation as used in the likelihood function.
Measured total cross sections of single top-quark and single top-antiquark production and their ratio $R_t$. In addition, the sum of top-quark and top-antiquark production is provided as well. Based on the total cross section the value of $f_\mathrm{LV}\cdot |V_{tb}|$ is determined.
The results of a search for pair production of the lighter scalar partners of top quarks in 2.05 fb-1 of pp collisions at sqrt(s) =7 TeV using the ATLAS experiment at the LHC are reported. Scalar top quarks are searched for in events with two same flavour opposite-sign leptons (electrons or muons) with invariant mass consistent with the Z boson mass, large missing transverse momentum and jets in the final state. At least one of the jets is identified as originating from a b-quark. No excess over Standard Model expectations is found. The results are interpreted in the framework of R-parity conserving, gauge mediated Supersymmetry breaking `natural' scenarios, where the neutralino is the next-to-lightest supersymmetric particle. Scalar top quark masses up to 310 GeV are excluded for the lightest neutralino mass between 115 GeV and 230 GeV at 95% confidence level, reaching an exclusion of the scalar top quark mass of 330 GeV for the lightest neutralino mass of 190 GeV. Scalar top quark masses below 240 GeV are excluded for all values of the lightest neutralino mass above the Z boson mass.
The missing ET distribution from the combined EE and MUMU data for SR1. Tabulated are the observed Data rates and the Standard Model predictions as well as the distributions expected for two signal scenarios, both with an STOP mass of 250 GeV, and NEUTRALINO1 masses of 100 GeV and 220 GeV respectively.
The number of b-tagged jets for SR1 for the combined EE and MUMU channels. Tabulated are the observed Data rates and the Standard Model predictions as well as the distributions expected for two signal scenarios, both with an STOP mass of 250 GeV, and NEUTRALINO1 masses of 100 GeV and 220 GeV respectively.
The distrubution of leading jet pT for SR1 for the combined EE and MUMU channels. Tabulated are the observed Data rates and the Standard Model predictions as well as the distributions expected for two signal scenarios, both with an STOP mass of 250 GeV, and NEUTRALINO1 masses of 100 GeV and 220 GeV respectively. The last pT bin includes the number of overflow events for both data abd SM expectation.