Date

Measurement of Upsilon production for p+p and p+d interactions at 800-GeV

The NuSea collaboration Zhu, L.Y. ; Reimer, Paul E. ; Mueller, B.A. ; et al.
Phys.Rev.Lett. 100 (2008) 062301, 2008.
Inspire Record 763967 DOI 10.17182/hepdata.42715

We report a high statistics measurement of Upsilon production with an 800 GeV/c proton beam on hydrogen and deuterium targets. The dominance of the gluon-gluon fusion process for Upsilon production at this energy implies that the cross section ratio, $\sigma (p + d \to \Upsilon) / 2\sigma (p + p\to \Upsilon)$, is sensitive to the gluon content in the neutron relative to that in the proton. Over the kinematic region 0 < x_F < 0.6, this ratio is found to be consistent with unity, in striking contrast to the behavior of the Drell-Yan cross section ratio $\sigma(p+d)_{DY}/2\sigma(p+p)_{DY}$. This result shows that the gluon distributions in the proton and neutron are very similar. The Upsilon production cross sections are also compared with the p+d and p+Cu cross sections from earlier measurements.

4 data tables match query

Differential cross section per nucleon as a function of Feynman X for UPSILON production on the DEUT target.

Differential cross section per nucleon as a function of Feynman X for UPSILON production on the P target.

Differential cross section per nucleon as a function of transverse momentum for UPSILON production on the DEUT target.

More…

Evidence for the omega pi pi decay modes of the a2 and omega(1675)

Diaz, J. ; Dibianca, F.A. ; Fickinger, W.J. ; et al.
Phys.Rev.Lett. 32 (1974) 260-264, 1974.
Inspire Record 94695 DOI 10.17182/hepdata.21339

We present evidence for the decay A20→ωπ+π0 with a branching ratio Γ(A2→ωππ)Γ(A2→ρπ)=0.28±0.09 and for the decay ω(1675)→ωπ+π− with a branching ratio Γ(ω(1975)→ωπ+π−)Γ(ω(1675)→ρπ)=0.47±0.18. Evidence is given for an intermediate B(1235)π state in the ω(1675) decay.

1 data table match query

BACKGROUND SUBTRACTED TP DISTRIBUTIONS.


Differential cross sections of J/psi and psi' in 800-GeV/c p Si interactions.

The E-771 collaboration Alexopoulos, T. ; Durandet, C. ; Erwin, A.R. ; et al.
Phys.Rev.D 55 (1997) 3927-3932, 1997.
Inspire Record 446872 DOI 10.17182/hepdata.22271

We present the xF and pT differential cross sections of J/ψ and ψ′, respectively, in the ranges −0.05

5 data tables match query

Additional systematic error given above.

Additional systematic error given above.

Additional systematic error given above.

More…

Measurement of the reaction pi- p ---> pi0 n at large momentum transfers

Brockett, W.S. ; Corlew, G.T. ; Frisken, William R. ; et al.
Phys.Rev.Lett. 26 (1971) 527-530, 1971.
Inspire Record 69039 DOI 10.17182/hepdata.21508

We present results of an experiment to measure the differential cross section of the reaction π−p→π0n between the forward and backward peaks. The measurements were made at incident π− momenta of 3.67 and 4.83 GeVc. The t range 1.7<~|t|<~4.9 (GeVc)2 was covered at the lower momentum and 1.8<~|t|<~7 (GeVc)2 at the higher momentum. At the lower momentum the cross section is essentially constant between |t|=2.4 and 4.8 (GeVc)2 while at the higher momentum the angular distribution exhibits a broad minimum centered at |t|=4.4 (GeVc)2.

2 data tables match query

No description provided.

No description provided.


Experimental Study of the Reactions $e^+ e^- \to e^+ e^-$ and $e^+ e^- \to \gamma \gamma$ at 29-{GeV}

Derrick, M. ; Gan, K.K. ; Kooijman, P. ; et al.
Phys.Rev.D 34 (1986) 3286, 1986.
Inspire Record 18585 DOI 10.17182/hepdata.23442

This paper reports measurements of the differential cross sections for the reactions e+e−→e+e− (Bhabha scattering) and e+e−→γγ (γ-pair production). The reactions are studied at a center-of-mass energy of 29 GeV and in the polar-angular region ‖costheta‖<0.55. A direct cross-section comparison between these two reactions provides a sensitive test of the predictions of quantum electrodynamics (QED) to order α3. When the ratio of γ-pair to Bhabha experimental cross sections, integrated over ‖costheta‖<0.55, is divided by the same ratio predicted from α3 QED theory, the result is 1.007±0.009±0.008. The 95%-confidence limits on the QED-cutoff parameters are Λ+>154 GeV and Λ−>220 GeV for Bhabha scattering, and Λ+>59 GeV and Λ−>59 GeV for γ-pair production.

1 data table match query

No description provided.


Hadron Production in $e^+ e^-$ Annihilation at $\sqrt{s}=29$-{GeV}

Derrick, M. ; Fernandez, E. ; Fries, R. ; et al.
Phys.Rev.D 35 (1987) 2639, 1987.
Inspire Record 215848 DOI 10.17182/hepdata.23381

Data from the High Resolution Spectrometer at the SLAC storage ring PEP have been used to study the inclusive production of baryons and mesons. Time-of-flight measurements are used to identify the charged hadrons. Neutral hadrons are identified from effective-mass peaks associated with their decay into two charged particles. Cross sections and other inclusive production characteristics are presented for π±, K±, and K0 (K¯0) mesons, and for the baryons (antibaryons) p (p¯) and Λ (Λ¯). The ratio of the inclusive cross section to the point cross section for the K0 and K¯0 mesons is R(K0,K¯0)=6.15±0.13±0.25, and for Λ and Λ¯, R(Λ,Λ¯)=0.846±0.036±0.085. The neutral-hadron differential cross sections are compared with the predictions of the Lund string model.

8 data tables match query

Charged particle fractions. Errors contain systematic uncertainties.

Charged particle invariant cross sections. Errors contain systematic uncertainties.

Charged particle invariant cross sections. Errors contain systematic uncertainties.

More…

Study of Quark Fragmentation in e+ e- Annihilation at 29-GeV: Charged Particle Multiplicity and Single Particle Rapidity Distributions

Derrick, M. ; Gan, K.K. ; Kooijman, P. ; et al.
Phys.Rev.D 34 (1986) 3304, 1986.
Inspire Record 18502 DOI 10.17182/hepdata.23443

This paper presents the charged-particle multiplicity distributions for e+e− annihilation at √s =29 GeV measured in the High Resolution Spectrometer. The data, which correspond to an integrated luminosity of 185 pb−1, were obtained at the SLAC e+e− storage ring PEP. The techniques used to correct the observed prong numbers are discussed. The multiplicity distribution of the charged particles has a mean value 〈n〉=12.87±0.03±0.30, a dispersion D2=3.67±0.02±0.18, and an f2 moment of 0.60±0.02±0.18. Results are also presented for a two-jet sample selected with low sphericity and aplanarity. The charged-particle distributions are almost Poissonian and narrower than have been reported by other e+e− experiments in this energy range. The mean multiplicity increases with the event sphericity, and for the sample of threefold-symmetric three-jet events, a value of 〈n〉=16.3±0.3±0.7 is found. No correlation is observed between the multiplicities in the two hemispheres when the events are divided into two jets by a plane perpendicular to the thrust axis. This result is in contrast with the situation in soft hadronic collisions, where a strong forward-backward correlation is measured. For the single jets, a mean multiplicity of 6.43±0.02±0.15 and a dispersion value of D2=2.55±0.02±0.13 are found. These values give further support to the idea of independent jet fragmentation. The multiplicity distributions are well fit by the negative-binomial distribution. The semi-inclusive rapidity distributions are presented. Comparisons are made to the measurements of charged-particle multiplicities in hadron-hadron and lepton-nucleon collisions.

13 data tables match query

Charged particle multiplicity distribution for the Inclusive Data Sample.

Charged particle multiplicity distribution for the Two Jet Data Sample.

Properties of multiplicity distributions for Inclusive Data Sample.

More…

A kinematically complete measurement of K+ --> pi+ pi0 pi0 decays.

The KEK PS E246 collaboration Shin, Y.H. ; Abe, M. ; Aoki, M. ; et al.
Eur.Phys.J.C 12 (2000) 627-631, 2000.
Inspire Record 526005 DOI 10.17182/hepdata.24453

None

1 data table match query

The Dalitz plot parameters G, H, and K are used in the standard parameterization of the matrix element squared (see PDG): M**2 = 1 + G*X + H*X**2 + K*Y**2,where X = (s3-s0)/m(PI)**2 and Y = (s1-s2)/m(PI)**2, s1 = (pK - pPI0)**2, s2 = (pK - pPI0)**2, s3 = (pK - pPI+)**2, s0 = (s1+s2+s3)/3.


Measurements of charm fragmentation into D/s*+ and D/s+ in e+ e- annihilations at s**(1/2) = 10.5-GeV.

The CLEO collaboration Briere, Roy A. ; Behrens, B.H. ; Ford, William T. ; et al.
Phys.Rev.D 62 (2000) 072003, 2000.
Inspire Record 526554 DOI 10.17182/hepdata.22227

A study of charm fragmentation into $D_s^{*+}$ and $D_s^+$ in $e^+e^-$ annihilations at $\sqrt{s}$=10.5 GeV is presented. This study using $4.72 \pm 0.05$ fb$^{-1}$ of CLEO II data reports measurements of the cross-sections $\sigma(D_s^{*+})$ and $\sigma(D_s^+)$ in momentum regions above $x=0.44$, where $x$ is the $D_s$ momentum divided by the maximum kinematically allowed $D_s$ momentum. The $D_s$ vector to vector plus pseudoscalar production ratio is measured to be $P_V(x(D_s^+)>0.44)=0.44\pm0.04$

4 data tables match query

D/S*+ cross sections in regions of X(D/S*+). BR1 = BR(D/S*+ --> D/S+ GAMMA) * BR(D/S+ --> PHI PI+) * BR(PHI --> K+ K-).

D/S+ cross sections in regions of X(D/S+). BR2 = BR(D/S+ --> PHI PI+) * BR(PHI --> K+ K-).

D/S*+ cross sections in regions of X/D/S+. In effect this is the secondary D/S+ cross section. BR2 = BR(D/S+ --> PHI PI+) * BR(PHI --> K+ K-).

More…

Study of inclusive Lambda production in e+ e- annihilations at 29-GeV

The HRS collaboration Geld, T.L. ; Neal, H. ; Akerlof, C. ; et al.
Phys.Rev.D 45 (1992) 3949-3954, 1992.
Inspire Record 339573 DOI 10.17182/hepdata.22726

Cross sections are presented for the inclusive production of Λ hyperons in electron-positron annihilations at s=29 GeV based on the full 291-pb−1 sample of data taken in the High Resolution Spectrometer experiment at the SLAC e+e− storage ring PEP. These results, and the associated correlation analyses, are consistent with the Lund model predictions with the strange diquark suppression ratio δ fixed at 0.59±0.10±0.18, as compared to the standard Lund value of 0.32. The Λ multiplicity has been found to be 0.182±0.020 per event. The opposite-strangeness multiplicity 〈nΛΛ¯〉 has been measured to be 0.046±0.020, whereas the like-strangeness multiplicity 〈nΛΛ+Λ¯Λ¯〉 is 0.009±0.028. A strong correlation is found between Λ's and Λ¯'s; when one is found in an event, the other is found in the same event with a probability that exceeds 50%.

4 data tables match query

No description provided.

Extrapolate to full z interval using Lund fit.

No description provided.

More…