The HEPData database will be migrated to a new host between 08:00 and 09:00 (UTC) on 25th June 2025, leading to a few minutes of downtime.
Showing 10 of 413 results
This paper presents a search for pair production of higgsinos, the supersymmetric partners of the Higgs bosons, in scenarios with gauge-mediated supersymmetry breaking. Each higgsino is assumed to decay into a Higgs boson and a nearly massless gravitino. The search targets events where each Higgs boson decays into $b\bar{b}$, leading to a reconstructed final state with at least three energetic $b$-jets and This paper presents a search for pair production of higgsinos, the supersymmetric partners of the Higgs bosons, in scenarios with gauge-mediated supersymmetry breaking. Each higgsino is assumed to decay into a Higgs boson and a nearly massless gravitino. The search targets events where each Higgs boson decays into $b\bar{b}$, leading to a reconstructed final state with at least three energetic $b$-jets and missing transverse momentum. Two complementary analysis channels are used, with each channel specifically targeting either low or high values of the higgsino mass. The low-mass (high-mass) channel exploits 126 (139) fb$^{-1}$ of $\sqrt{s}=13$ TeV data collected by the ATLAS detector during Run 2 of the Large Hadron Collider. No significant excess above the Standard Model prediction is found. At 95% confidence level, masses between 130 GeV and 940 GeV are excluded for higgsinos decaying exclusively into Higgs bosons and gravitinos. Exclusion limits as a function of the higgsino decay branching ratio to a Higgs boson are also reported.
Higgsinos with masses near the electroweak scale can solve the hierarchy problem and provide a dark matter candidate, while detecting them at the LHC remains challenging if their mass splitting is $\mathcal{O}(1 \text{GeV})$. This Letter presents a novel search for nearly mass-degenerate Higgsinos in events with an energetic jet, missing transverse momentum, and a low-momentum track with a significant transverse impact parameter using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected by the ATLAS experiment. For the first time since LEP, a range of mass splittings between the lightest charged and neutral Higgsinos from $0.3$ GeV to $0.9$ GeV is excluded at 95$\%$ confidence level, with a maximum reach of approximately $170$ GeV in the Higgsino mass.
Single- and double-differential cross-section measurements are presented for the production of top-quark pairs, in the lepton + jets channel at particle and parton level. Two topologies, resolved and boosted, are considered and the results are presented as a function of several kinematic variables characterising the top and $t\bar{t}$ system and jet multiplicities. The study was performed using data from $pp$ collisions at centre-of-mass energy of 13 TeV collected in 2015 and 2016 by the ATLAS detector at the CERN Large Hadron Collider (LHC), corresponding to an integrated luminosity of $36~\mathrm{fb}^{-1}$. Due to the large $t\bar{t}$ cross-section at the LHC, such measurements allow a detailed study of the properties of top-quark production and decay, enabling precision tests of several Monte Carlo generators and fixed-order Standard Model predictions. Overall, there is good agreement between the theoretical predictions and the data.
Relative differential cross-section as a function of $p_{T}^{t,had}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t,had}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y^{t,had}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y^{t,had}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t,1}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t,1}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t,2}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t,2}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $m^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $m^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|p_{out}^{t,had}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|p_{out}^{t,had}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $N^{extra jets}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $N^{extra jets}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $N^{extra jets}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $N^{extra jets}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y^{t\bar{t}}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y^{t\bar{t}}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y_{boost}^{t\bar{t}}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y_{boost}^{t\bar{t}}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $\chi^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $\chi^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Total cross-section at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 3.5 < $N^{jets}$ < 4.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 4.5 < $N^{jets}$ < 5.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 5.5 < $N^{jets}$ < 6.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 6.5 < $N^{jets}$ < 7.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 3.5 < $N^{jets}$ < 4.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 4.5 < $N^{jets}$ < 5.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 5.5 < $N^{jets}$ < 6.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 6.5 < $N^{jets}$ < 7.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 0.0 < $|y^{t,had}|$ < 0.7 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 0.7 < $|y^{t,had}|$ < 1.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 1.4 < $|y^{t,had}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 0.0 < $|y^{t,had}|$ < 0.7 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 0.7 < $|y^{t,had}|$ < 1.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 1.4 < $|y^{t,had}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.0 < $|y^{t\bar{t}}|$ < 0.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.4 < $|y^{t\bar{t}}|$ < 0.8 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.8 < $|y^{t\bar{t}}|$ < 1.2 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 1.2 < $|y^{t\bar{t}}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.0 < $|y^{t\bar{t}}|$ < 0.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.4 < $|y^{t\bar{t}}|$ < 0.8 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.8 < $|y^{t\bar{t}}|$ < 1.2 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 1.2 < $|y^{t\bar{t}}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.0 < $|y^{t\bar{t}}|$ < 0.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.4 < $|y^{t\bar{t}}|$ < 0.8 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.8 < $|y^{t\bar{t}}|$ < 1.2 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 1.2 < $|y^{t\bar{t}}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.0 < $|y^{t\bar{t}}|$ < 0.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.4 < $|y^{t\bar{t}}|$ < 0.8 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.8 < $|y^{t\bar{t}}|$ < 1.2 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 1.2 < $|y^{t\bar{t}}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,had}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t,had}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t,had}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,1}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,1}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,1}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $N^{extra jets}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $N^{extra jets}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $N^{extra jets}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $N^{extra jets}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the resolved topology.
Relative differential cross-section as a function of $p_{T}^{t}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y^{t}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y^{t}|$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y^{t}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y^{t}|$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $m^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $m^{t\bar{t}}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $m^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y^{t\bar{t}}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y^{t\bar{t}}|$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y^{t\bar{t}}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y^{t\bar{t}}|$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y_{boost}^{t\bar{t}}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y_{boost}^{t\bar{t}}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $H_{T}^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $H_{T}^{t\bar{t}}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $H_{T}^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $\chi_{tt}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $\chi_{tt}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $\chi_{tt}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $\chi_{tt}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 0.0 < $|y^{t}|$ < 0.75 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 0.75 < $|y^{t}|$ < 1.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 1.5 < $|y^{t}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 0.0 < $|y^{t}|$ < 0.75 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 0.75 < $|y^{t}|$ < 1.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 1.5 < $|y^{t}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 180.0 GeV < $p_{T}^{t\bar{t}}$ < 330.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 330.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.1 GeV < $|y^{t\bar{t}}|$ < 1.7 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 GeV < $|y^{t\bar{t}}|$ < 0.5 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.7 GeV < $|y^{t\bar{t}}|$ < 2.5 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.5 GeV < $|y^{t\bar{t}}|$ < 1.1 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t}$ and the absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t}|$ and the absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t}|$ and the absolute differential cross-section as function of $|y^{t}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi_{tt}$ and the absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi_{tt}$ and the absolute differential cross-section as function of $|y^{t}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi_{tt}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi_{tt}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi_{tt}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi_{tt}$ and the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi_{tt}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi_{tt}$ and the absolute differential cross-section as function of $\chi_{tt}$ at parton level in the resolved topology.
Absolute differential cross-section as a function of $p_{T}^{t}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $y^{t}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $m^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $y^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $p_{T}^{t,had}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t,had}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y^{t,had}|$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y^{t,had}|$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t,1}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t,1}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t,2}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t,2}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y^{t\bar{t}}|$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y^{t\bar{t}}|$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $m^{t\bar{t}}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $m^{t\bar{t}}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $\chi^{t\bar{t}}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $\chi^{t\bar{t}}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $H_{T}^{t\bar{t}}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $H_{T}^{t\bar{t}}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $N^{extra jets}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $N^{extra jets}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $N^{extra jets}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $N^{extra jets}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $N^{subjets}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $N^{subjets}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $N^{subjets}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $N^{subjets}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Total cross-section at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.0 < $|y^{t\bar{t}}|$ < 1.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 1.0 < $|y^{t\bar{t}}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 1.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 1.0 < $|y^{t\bar{t}}|$ < 2.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 1.0 < $|y^{t\bar{t}}|$ < 2.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 1.0 < $|y^{t\bar{t}}|$ < 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.0 < $|y^{t\bar{t}}|$ < 1.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 1.0 < $|y^{t\bar{t}}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 1.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 1.0 < $|y^{t\bar{t}}|$ < 2.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 1.0 < $|y^{t\bar{t}}|$ < 2.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 1.0 < $|y^{t\bar{t}}|$ < 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the boosted topology in 0.0 < $|y^{t,had}|$ < 1.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the boosted topology in 1.0 < $|y^{t,had}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 1.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.0 < $|y^{t,had}|$ < 2.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.0 < $|y^{t,had}|$ < 2.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.0 < $|y^{t,had}|$ < 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the boosted topology in 0.0 < $|y^{t,had}|$ < 1.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the boosted topology in 1.0 < $|y^{t,had}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 1.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.0 < $|y^{t,had}|$ < 2.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.0 < $|y^{t,had}|$ < 2.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.0 < $|y^{t,had}|$ < 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the boosted topology in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the boosted topology in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the boosted topology in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the boosted topology in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ at particle level in the boosted topology in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ at particle level in the boosted topology in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ at particle level in the boosted topology in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ at particle level in the boosted topology in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.0 < $|y^{t\bar{t}}|$ < 0.65 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.65 < $|y^{t\bar{t}}|$ < 1.3 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 1.3 < $|y^{t\bar{t}}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.0 < $|y^{t\bar{t}}|$ < 0.65 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.65 < $|y^{t\bar{t}}|$ < 1.3 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 1.3 < $|y^{t\bar{t}}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 2.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 3.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 2.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 3.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 2.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 2.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 1.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 2.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 1.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 2.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,had}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t,had}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t,had}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,1}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,1}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,1}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $N^{extra jets}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $N^{extra jets}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $N^{subjets}$ at particle level in the boosted topology.
Relative differential cross-section as a function of $m^{t\bar{t}}$ at parton level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $m^{t\bar{t}}$ at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $m^{t\bar{t}}$ at parton level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t}$ at parton level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t}$ at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t}$ at parton level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Total cross-section at parton level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ at parton level in the boosted topology in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ at parton level in the boosted topology in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ at parton level in the boosted topology in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ at parton level in the boosted topology in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t}$ and the absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the boosted topology.
A measurement of the $ZZ$ production in the $\ell^{-}\ell^{+}\ell^{\prime -}\ell^{\prime +}$ and $\ell^{-}\ell^{+}\nu\bar{\nu}$ channels $(\ell = e, \mu)$ in proton--proton collisions at $\sqrt{s} = 8$ TeV at the Large Hadron Collider at CERN, using data corresponding to an integrated luminosity of 20.3 fb$^{-1}$ collected by the ATLAS experiment in 2012 is presented. The fiducial cross sections for $ZZ\to\ell^{-}\ell^{+}\ell^{\prime -}\ell^{\prime +}$ and $ZZ\to \ell^{-}\ell^{+}\nu\bar{\nu}$ are measured in selected phase-space regions. The total cross section for $ZZ$ events produced with both $Z$ bosons in the mass range 66 to 116 GeV is measured from the combination of the two channels to be $7.3\pm0.4\textrm{(stat)}\pm0.3\textrm{(syst)}\pm0.2\textrm{(lumi)}$ pb, which is consistent with the Standard Model prediction of $6.6^{+0.7}_{-0.6}$ pb. The differential cross sections in bins of various kinematic variables are presented. The differential event yield as a function of the transverse momentum of the leading $Z$ boson is used to set limits on anomalous neutral triple gauge boson couplings in $ZZ$ production.
Measurements of transverse energy-energy correlations and their associated asymmetries in multi-jet events using the ATLAS detector at the LHC are presented. The data used correspond to $\sqrt{s} = 8$ TeV proton-proton collisions with an integrated luminosity of 20.2 fb$^{-1}$. The results are presented in bins of the scalar sum of the transverse momenta of the two leading jets, unfolded to the particle level and compared to the predictions from Monte Carlo simulations. A comparison with next-to-leading-order perturbative QCD is also performed, showing excellent agreement within the uncertainties. From this comparison, the value of the strong coupling constant is extracted for different energy regimes, thus testing the running of $\alpha_s(\mu)$ predicted in QCD up to scales over 1 TeV. A global fit to the transverse energy-energy correlation distributions yields $\alpha_s(m_Z) = 0.1162 \pm 0.0011 \mbox{ (exp.)}^{+0.0084}_{-0.0070} \mbox{ (theo.)}$, while a global fit to the asymmetry distributions yields a value of $\alpha_s(m_Z) = 0.1196 \pm 0.0013 \mbox{ (exp.)}^{+0.0075}_{-0.0045} \mbox{ (theo.)}$.
The cross-section for the production of two jets in association with a leptonically decaying Z boson ($Zjj$) is measured in proton-proton collisions at a centre-of-mass energy of 13 TeV, using data recorded with the ATLAS detector at the Large Hadron Collider, corresponding to an integrated luminosity of 3.2 fb$^{-1}$. The electroweak $Zjj$ cross-section is extracted in a fiducial region chosen to enhance the electroweak contribution relative to the dominant Drell-Yan $Zjj$ process, which is constrained using a data-driven approach. The measured fiducial electroweak cross-section is $\sigma^{Zjj}_{EW}= 119\pm 16 (\mathrm{stat.}) \pm 20 (\mathrm{syst.})\pm 2 (\mathrm{lumi.})$ for dijet invariant mass greater than 250 GeV, and $34.2\pm 5.8 (\mathrm{stat.})\pm 5.5 (\mathrm{syst.})\pm 0.7 (\mathrm{lumi.})$ for dijet invariant mass greater than 1 TeV. Standard Model predictions are in agreement with the measurements. The inclusive $Zjj$ cross-section is also measured in six different fiducial regions with varying contributions from electroweak and Drell-Yan $Zjj$ production.
A search for heavy resonances decaying to a $W$ or $Z$ boson and a Higgs boson in the $q\bar{q}^{(\prime)}b\bar{b}$ final state is described. The search uses 36.1 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} =$ 13 TeV collected by the ATLAS detector at the CERN Large Hadron Collider in 2015 and 2016. The data are in agreement with the Standard Model expectations, with the largest excess found at a resonance mass of 3.0 TeV with a local (global) significance of 3.3 (2.1) $\sigma$. The results are presented in terms of constraints on a simplified model with a heavy vector triplet. Upper limits are set on the production cross-section times branching ratio for resonances decaying to a $W$ ($Z$) boson and a Higgs boson, itself decaying to $b\bar{b}$, in the mass range between 1.1 and 3.8 TeV; the limits range between 83 and 1.6 fb (77 and 1.1 fb) at 95% confidence level.
The results of a search for vector-like top quarks using events with exactly one lepton, at least four jets, and large missing transverse momentum are reported. The search is optimised for pair production of vector-like top quarks in the $Z(\rightarrow \! \! \nu \nu) \, t + X$ decay channel. LHC pp collision data at a centre-of-mass energy of $\sqrt{s}=13$ TeV recorded by the ATLAS detector in 2015 and 2016 are used, corresponding to an integrated luminosity of 36.1 $\mathrm{fb}^{-1}$. No significant excess over the Standard Model expectation is seen and upper limits on the production cross-section of a vector-like $T$ quark pair as a function of the $T$ quark mass are derived. The observed (expected) 95% CL lower limits on the $T$ mass are 870 GeV (890 GeV) for the weak-isospin singlet model, 1.05 TeV (1.06 TeV) for the weak-isospin doublet model and 1.16 TeV (1.17 TeV) for the pure $Zt$ decay mode. Limits are also set on the mass as a function of the decay branching ratios, excluding large parts of the parameter space for masses below 1 TeV.
A search is conducted for new resonant and non-resonant high-mass phenomena in dielectron and dimuon final states. The search uses 36.1 fb$^{-1}$ of proton-proton collision data, collected at $\sqrt{s}$ = 13 TeV by the ATLAS experiment at the LHC in 2015 and 2016. No significant deviation from the Standard Model prediction is observed. Upper limits at 95% credibility level are set on the cross-section times branching ratio for resonances decaying into dileptons, which are converted to lower limits on the resonance mass, up to 4.1 for the E$_{6}$-motivated Z'$_{\chi}$. Lower limits on the $qq \ell\ell$ contact interaction scale are set between 24 TeV and 40 TeV, depending on the model.
A search for massive coloured resonances which are pair-produced and decay into two jets is presented. The analysis uses 36.7 fb$^{-1}$ of $\sqrt{s}=$ 13 TeV pp collision data recorded by the ATLAS experiment at the LHC in 2015 and 2016. No significant deviation from the background prediction is observed. Results are interpreted in a SUSY simplified model where the lightest supersymmetric particle is the top squark, $\tilde{t}$, which decays promptly into two quarks through $R$-parity-violating couplings. Top squarks with masses in the range 100 GeV < $m_{\tilde{t}}$ < 410 GeV are excluded at 95% confidence level. If the decay is into a $b$-quark and a light quark, a dedicated selection requiring two $b$-tags is used to exclude masses in the ranges 100 GeV < $m_{\tilde{t}}$ < 470 GeV and 480 GeV < $m_{\tilde{t}}$ < 610 GeV. Additional limits are set on the pair-production of massive colour-octet resonances.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.