Lambda production is studied in K − p interactions at 32 GeV/ c . The total Λ cross section is 2.31±0.03 mb . Using the measured Λγ combinations we find that (31±4)% of all Λ's are produced via the Σ 0 → Λγ decay. About 60% of the Λ's are associated with either a N N or K K pair; about 40% of the Λ's are produced through the hypercharge annihiltion reaction K − p→ Λ + π 'a. The two-peak structure of the invariant x distribution can be related to fragmentation processes. The Λ is found to be unpolarized in the target fragmentation region, whereas a transverse polarization is observed for forward produced Λ's. As a function of p ⊥, a polarization effect is measured at medium p ⊥.
No description provided.
No description provided.
No description provided.
In a high statistics (90 events/μb) bubble chamber experiment, the reactions π − p→K s 0 K ± π ∓ n have been studied at 3.95 GeV/ c . A significant enhancement is observed in the ( K K π) system which we attribute to the production of the E(1420) meson. For its mass, M , and width, Λ, we find M =1426±6 MeV and Γ =40±15 MeV. The E(1420) quantum numbers are determined to be I G J P =0 + 1 + with a branching ratio E → K ∗ K + c.c E →[δπ+( K ∗ K + c.c. )]=0.86±0.12 , where δ→ K K . The cross section for the reaction π − p→En, with E→K 0 K ± π ± , is 8.2±1.0 μ b. Forward and backward productions are observed in the approximate ratio 2:1. The SU(3) assignment of the E(1420) meson is discussed.
BACKGROUND SUBTRACTED.
No description provided.
No description provided.
An analysis is presented of the reaction K − p → K 0 π − p at 4.2 GeV /c incident momentum, using analytical techniques in fully dimensional phase space. This methods allows to isolate the contributions of the 0 + , 1 − and 2 + (K π ) partial waves in various helecity Separating well-understood contributions from the rest, the method is particularly useful for the detection of small effects (≈1% of the total final-state cross section) not visible in the mass distributions: (i) small cross-section contributions of 3 − (K π partial waves, K ∗ (1780), are unambiguously isolated; (ii) 3.5σ evidence is given for Σ(1480) in the (p K 0 ) system; (iii) effects due to a second K π P-wave or the possible presence of a doubly peripheral mechanism are discussed. The method furthermore allows simultaneous treatment of the (K π ) partial waves, p π ) partial waves and their interferences and of a Σ(1765) signal (with spin 5 2 ). While interferences within the (K π ) and within the (p π ) systems are strongly determining the corresponding distributions, no interference between these systems is needed.
CHANNELS CONTRIBUTING TO K- P --> AK0 PI- P. M/ETA IS ABSOLUTE VALUE OF Z-COMPONENT OF SPIN/EXCHANGE NATURALITY.
The properties of the effect observed in the reaction p p → π + π − π + π − π 0 at 1949 ± 10 MeV /c 2 (τ ≅ 80 MeV /c 2 ) are studied. The ω 0 ϱ 0 , A 2 0 π + π − and π + π − π + π − π 0 (non-resonant) channels are found to be coupled with this object. The assignment I G = 1 − is established and an analysis of the √ s behaviour of the density matrix elements for the final state ω 0 ϱ 0 clearly favour J P = 2 + , 4 + … Comparisons are made with present theoretical schemes describing this mass region.
MAJOR CONTRIBUTION TO STRUCTURE OBSERVED AT 1949 +- 10 MEV WITH WIDTH 80 +- 20 MEV.
An experimental analysis of p p interactions between the p p threshold (√ s = 1878 MeV) and √ s = 2 100 MeV leads to clear evidence for an s -channel effect in the reaction p p → π + π − π + π − π 0 at 1949 ± 10 MeV /c 2 (Γ ⋍ 80 MeV /c 2 ) . A comparison is made with the backward elastic scattering and charge-exchange behaviour. An interpretation in terms of an object strongly coupled to mesonic decay modes, with small or middle-sized elasticity ( x ⩽ 0.135 −0.06 +0.13 ) is given. No significant narrow structure is observed in the backward elastic scattering between 1.9 and 2 GeV. The experimental resolution of √ s in this case is 2 MeV.
LOWER MOMENTUM RESULTS WERE REPORTED IN CH. D'ANDLAU ET AL., PL 58B, 223 (1975). TABULATED NUMERICAL VALUES OF DATA ON FIGURES SUPPLIED BY M. LALOUM.
The reaction p n → p p π − at 2.98 GeV/ c is studied with high statistics. The dominant Δ −− production is found in the framework of the additive quark model to proceed mainly through unnatural parity exchange in the t -channel. A detailed comparison with the reaction K − p → K ∗0 n confirms, for the dominant part of the cross section, the predictions of the quark model.
No description provided.
MIN(-T) IS 0.015 +- 0.006 GEV**2.
New results on the inclusive and semi-inclusive production of π + mesons and protons in the whole phase space are given for about 2.2 · 10 4 inelastic p p interactions at 22.4 GeV/ c . A method of statistical separation for spectra of particles of the same charge which are produced in CP -symmetrical reactions is discussed in detail. Experimental data are compared with quark-parton model predictions.
No description provided.
NON-ANNIHILATION EVENTS ONLY.
No description provided.
None
No description provided.
No description provided.
No description provided.
Data from the MARK-J detector on the reactions e+e−→μ+μ−, τ+τ− in the center-of-mass energy range from 12 to 36.7 GeV are presented. The μ, τ radii are shown to be <10−16 cm. A search has been made for the production of a new heavy lepton and for the production of spin-0 supersymmetric partners of the muon. 95%-confidence-level lower limits of 16 GeV for the mass of a new charged heavy lepton and 15 GeV for the mass of the scalar partners of the muon are obtained.
No description provided.
The ϒ, ϒ′, and ϒ′′ states have been observed at the Cornell Electron Storage Ring as narrow peaks in σ(e+e−→hadrons) versus beam energy. Data were collected during a run with integrated luminosity of 1000 nb−1, using the Columbia University-Stony Brook segmented NaI detector. The measured mass differences are M(ϒ′)−M(ϒ)=559±1(±3) MeV and M(ϒ′′)−M(ϒ)=889±1(±5) MeV, where the errors in parentheses represent systematic uncertainties. Preliminary values for the leptonic width ratios were also obtained.
HADRONIC EVENTS/SMALL-ANGLE BHABHA YIELD.