This Letter reports the first measurement of photonuclear D$^0$ meson production in ultraperipheral heavy ion collisions. The study is performed using lead-lead collision data, with an integrated luminosity of 1.38 nb$^{-1}$, collected by the CMS experiment at a nucleon-nucleon center-of-mass energy of 5.36 TeV. Photonuclear events, where one of the colliding nuclei breaks up and the other remains intact, are selected based on breakup neutron emissions and by requiring no particle activity in a large rapidity interval in the direction of the photon-emitting nucleus. The D$^0$ mesons are reconstructed via the D$^0$$\to$ K$^-$$π^+$ decay channel, with the cross section measured as a function of D$^0$ meson transverse momentum and rapidity. The results are compared with next-to-leading-order perturbative QCD calculations that employ recent parametrizations of the lead nuclear parton distribution functions, as well as with predictions based on the color glass condensate framework. This measurement is the first photonuclear collision study characterizing parton distribution functions of lead nuclei for parton fractional momenta $x$ (relative to the nucleon) ranging approximately from a few 10$^{-4}$ to 10$^{-2}$ for different hard energy scale $Q^2$ selections.
The mass distribution of D$^{0}$ decaying to K$^{-}$ and $\pi^{+}$ for $5 < p_{\mathrm{T}} < 8$ GeV and $0.0 < y < 1.0$ in 0nXn ultraperipheral PbPb collisions.
The d$^{2}\sigma$/dydp$_{\mathrm{T}}$ production cross section of D$^{0}$ for $2 < p_{\mathrm{T}} < 5$ GeV in ultraperipheral PbPb collisions.
The d$^{2}\sigma$/dydp$_{\mathrm{T}}$ production cross section of D$^{0}$ for $5 < p_{\mathrm{T}} < 8$ GeV in ultraperipheral PbPb collisions.
A measurement of the angular structure of jets containing a prompt D$^0$ meson and of inclusive jets in proton-proton collisions at the LHC at a center-of-mass energy of 5.02 TeV is presented. The data corresponding to an integrated luminosity of 301 pb$^{-1}$ were collected by the CMS experiment in 2017. Two jet grooming algorithms, late-$k_\mathrm{T}$ and soft drop, are used to study the intrajet radiation pattern using iterative Cambridge$-$Aachen declustering. The splitting-angle distributions of jets with transverse momentum ($p_\mathrm{T}$) of around 100 GeV, obtained with these two algorithms, show that there is a shift of the distribution for jets containing a prompt D$^0$ meson with respect to inclusive jets. The shift observed in the late-$k_\mathrm{T}$ grooming approach is consistent with the dead-cone effect, whereas the shift for splittings selected with the soft-drop algorithm appears to be dominated by gluon splitting to charm quark-antiquark pairs. The measured distributions are corrected to the particle level and can be used to constrain model predictions for the substructure of high-$p_\mathrm{T}$ charm quark jets.
The unfolded late-$k_{T}$ angular distribution for prompt $D^{0}$ jets.
The unfolded late-$k_{T}$ angular distribution for inclusive jets.
The unfolded SD angular distribution for prompt $D^{0}$ jets.
The first measurement of pseudorapidity and azimuthal angle distributions relative to the momentum vector of a Z boson for low transverse momentum ($p_\mathrm{T}$) charged hadrons in lead-lead (PbPb) collisions is presented. By studying the hadrons produced in an event with a high-$p_\mathrm{T}$ Z boson (40 $\lt$$p_\mathrm{T}$$\lt$ 350 GeV), the analysis probes how the quark-gluon plasma (QGP) medium created in these collisions affects the parton recoiling opposite to the Z boson. Utilizing PbPb data at a nucleon-nucleon center-of-mass energy $\sqrt{s_{_\mathrm{NN}}}$ = 5.02 TeV from 2018 with an integrated luminosity of 1.67 nb$^{-1}$ and proton-proton (pp) data at the same energy from 2017 with 301 pb$^{-1}$, the distributions are examined in bins of charged-hadron $p_\mathrm{T}$. A significant modification of the distributions for charged hadrons in the range 1$\lt$$p_\mathrm{T}$$\lt$ 2 GeV in PbPb collisions is observed when compared to reference measurements from pp collisions. The data provide new information about the correlation between hard and soft particles in heavy ion collisions, which can be used to test predictions of various jet quenching models. The results are consistent with expectations of a hydrodynamic wake created when the QGP is depleted of energy by the parton propagating through it. Based on comparisons of PbPb data with pp references and predictions from theoretical models, this Letter presents the first evidence of medium-recoil and medium-hole effects caused by a hard probe.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $1 <p_T < 2$ GeV in pp collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $2 <p_T < 4$ GeV in pp collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $4 <p_T < 10$ GeV in pp collisions.
The first observation of coherent $\phi$(1020) meson photoproduction off heavy nuclei is presented using ultraperipheral lead-lead collisions at a center-of-mass energy per nucleon pair of 5.36 TeV. The data were collected by the CMS experiment and correspond to an integrated luminosity of 1.68 $\mu$b$^{-1}$. The $\phi$(1020) meson signals are reconstructed via the K$^+$K$^-$ decay channel. The production cross section is presented as a function of the $\phi$(1020) meson rapidity in the range 0.3 $\lt$$\lvert y\rvert$$\lt$ 1.0, probing gluons that carry a fraction of the nucleon momentum ($x$) around $10^{-4}$. The observed cross section exhibits little dependence on rapidity and is significantly suppressed, by a factor of ${\sim}$5, compared to a baseline model that treats a nucleus as a collection of free nucleons. Theoretical models that incorporate either nuclear shadowing or gluon saturation predict suppression of the $\phi$(1020) meson cross section with only a small dependence on rapidity, but the magnitude of the predicted suppression varies greatly. Models considering only nuclear shadowing effects result in the best agreement with the experimental data. This study establishes a powerful new tool for exploring nuclear effects and nuclear gluonic structure in the small-$x$ regime at a unique energy scale bridging the perturbative and nonperturbative quantum chromodynamics domains.
The differential coherent $\phi$ photoproduction cross section and the nuclear suppression factor as a function of rapidity.
Anisotropic flow and radial flow are two key probes of the expansion dynamics and properties of the quark-gluon plasma (QGP). While anisotropic flow has been extensively studied, radial flow, which governs the system's radial expansion, has received less attention. Notably, experimental evidence for the global and collective nature of radial flow has been lacking. This Letter presents the first measurement of transverse momentum ($p_{\mathrm{T}}$) dependence of radial flow fluctuations ($v_0(p_{\mathrm{T}})$) over $0.5<p_{\mathrm{T}}<10$ GeV, using a two-particle correlation method in Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV. The data reveal three key features supporting the collective nature of radial flow: long-range correlation in pseudorapidity, factorization in $p_{\mathrm{T}}$, and centrality-independent shape in $p_{\mathrm{T}}$. The comparison with a hydrodynamic model demonstrates the sensitivity of $v_0(p_{\mathrm{T}})$ to bulk viscosity, a crucial transport property of the QGP. These findings establish a new, powerful tool for probing collective dynamics and properties of the QGP.
Data from Figure 2, panel a, $v_{0}$
Data from Figure 2, panel c, upper panel, Normalized Covariance $\times 10^{3}$ in 0-5% Centrality
Data from Figure 2, panel c, lower panel, Normalized Covariance $\times 10^{3}$ in 50-60% Centrality
Energy-energy correlators are constructed by averaging the number of charged particle pairs within jets, weighted by the product of their transverse momenta, as a function of the angular separation of the particles within a pair. They are sensitive to a multitude of perturbative and nonperturbative quantum chromodynamics phenomena in high-energy particle collisions. Using lead-lead data recorded with the CMS detector, energy-energy correlators inside high transverse momentum jets are measured in heavy ion collisions for the first time. The data are obtained at a nucleon-nucleon center-of-mass energy of 5.02 TeV and correspond to an integrated luminosity of 1.70 nb$^{-1}$. A similar analysis is done for proton-proton collisions at the same center-of-mass energy to establish a reference. The ratio of lead-lead to proton-proton energy-energy correlators reveals significant jet substructure modifications in the quark-gluon plasma. The results are compared to different models that incorporate either color coherence or medium response effects, where the two effects predict similar substructure modifications.
The energy-energy correlator distributions constructed with charged particles with $p_{\mathrm{T}} > 1$ GeV for energy weight $n=1$ and jet $p_{\mathrm{T}}$ selection $120 < p_{\mathrm{T,jet}} < 140$ GeV. The results are shown for different centrality bins in PbPb collisions and for pp collisions.
The energy-energy correlator distributions constructed with charged particles with $p_{\mathrm{T}} > 1$ GeV for energy weight $n=1$ and jet $p_{\mathrm{T}}$ selection $120 < p_{\mathrm{T,jet}} < 140$ GeV. The results are shown for different centrality bins in PbPb collisions and for pp collisions.
The energy-energy correlator distributions constructed with charged particles with $p_{\mathrm{T}} > 1$ GeV for energy weight $n=1$ and jet $p_{\mathrm{T}}$ selection $140 < p_{\mathrm{T,jet}} < 160$ GeV. The results are shown for different centrality bins in PbPb collisions and for pp collisions.
Measurements are presented of the W and Z boson production cross sections in proton-proton collisions at a center-of-mass energy of 13.6 TeV. Data collected in 2022 and corresponding to an integrated luminosity of 5.01 fb$^{-1}$ with one or two identified muons in the final state are analyzed. The results for the products of total inclusive cross sections and branching fractions for muonic decays of W and Z bosons are 11.93 $\pm$ 0.08 (syst) $\pm$ 0.17 (lumi) $^{+0.07}_{-0.07}$ (acc) nb for W$^+$ boson production, 8.86 $\pm$ 0.06 (syst) $\pm$ 0.12 (lumi) $^{+0.05}_{-0.06}$ (acc) nb for W$^-$ boson production, and 2.021 $\pm$ 0.009 (syst) $\pm$ 0.028 (lumi) $^{+0.011}_{-0.013}$ (acc) nb for the Z boson production in the dimuon mass range of 60-120 GeV, all with negligible statistical uncertainties. Furthermore, the corresponding fiducial cross sections, as well as cross section ratios for both fiducial and total phase space, are provided. The ratios include charge-separated results for W boson production (W$^+$ and W$^-$) and the sum of the two contributions (W$^\pm$), each relative to the measured Z boson production cross section. Additionally, the ratio of the measured cross sections for W$^+$ and W$^-$ boson production is reported. All measurements are in agreement with theoretical predictions, calculated at next-to-next-to-leading order accuracy in quantum chromodynamics.
Corrected normalized distribution of the transverse momentum of the leading muon in the Z boson signal region. Simulated contributions from Z boson, electroweak, and ttbar production, as well as their sum, and the data are shown.
Corrected normalized distribution of the transverse momentum of the trailing muon in the Z boson signal region. Simulated contributions from Z boson, electroweak, and ttbar production, as well as their sum, and the data are shown.
Corrected normalized distribution of the missing transverse momentum in the Z boson signal region. Simulated contributions from Z boson, electroweak, and ttbar production, as well as their sum, and the data are shown.
This paper presents the measurement of charged-hadron and identified-hadron ($K^\mathrm{0}_\mathrm{S}$, $Λ$, $Ξ^\mathrm{-}$) yields in photo-nuclear collisions using 1.7 $\mathrm{nb^{-1}}$ of $\sqrt{s_\mathrm{NN}} = 5.02$ TeV Pb+Pb data collected in 2018 with the ATLAS detector at the Large Hadron Collider. Candidate photo-nuclear events are selected using a combination of tracking and calorimeter information, including the zero-degree calorimeter. The yields as a function of transverse momentum and rapidity are measured in these photo-nuclear collisions as a function of charged-particle multiplicity. These photo-nuclear results are compared with 0.1 $\mathrm{nb^{-1}}$ of $\sqrt{s_\mathrm{NN}} = 5.02$ TeV $p$+Pb data collected in 2016 by ATLAS using similar charged-particle multiplicity selections. These photo-nuclear measurements shed light on potential quark-gluon plasma formation in photo-nuclear collisions via observables sensitive to radial flow, enhanced baryon-to-meson ratios, and strangeness enhancement. The results are also compared with the Monte Carlo DPMJET-III generator and hydrodynamic calculations to test whether such photo-nuclear collisions may produce small droplets of quark-gluon plasma that flow collectively.
The multiplicity distribution (#it{N}_{ch}^{rec}) from Pb+Pb photo-nuclear collisions.
The multiplicity distribution (#it{N}_{ch}^{rec}) from p+Pb collisions.
The Charged-hadron yields as a function of pT in different y selections in Pb+Pb photo-nuclear collisions.
Incoherent J/$ψ$ photoproduction in heavy ion ultraperipheral collisions (UPCs) provides a sensitive probe of localized, fluctuating gluonic structures within heavy nuclei. This study reports the first measurement of the photon-nucleon center-of-mass energy ($W_{γ\mathrm{N}}$) dependence of this process in PbPb UPCs at a nucleon-nucleon center-of-mass energy of 5.02 TeV, using 1.52 nb$^{-1}$ of data recorded by the CMS experiment. The measurement covers a wide $W_{γ\mathrm{N}}$ range of $\approx$ 40-400 GeV, probing gluons carrying a fraction $x$ of nucleon momentum down to an unexplored region of 6.5 $\times$ 10$^{-5}$. Compared to baseline predictions neglecting nuclear effects, the measured cross sections exhibit significantly greater suppression at lower $x$. Additionally, the ratio of incoherent to coherent photoproduction is found to be constant across the probed $W_{γ\mathrm{N}}$ and $x$ range, disfavoring the establishment of the black disk limit. This study provides critical insights into the $x$-dependent evolution of fluctuating gluonic structures within nuclei and calls for further advancements in theoretical models incorporating nuclear shadowing and gluon saturation.
The differential incoherent $\mathrm{J}/\psi$ photoproduction cross section as a function of $|y|$, in different neutron multiplicity classes.
The differential incoherent $\mathrm{J}/\psi$ photoproduction cross section as a function of $y$, in different neutron multiplicity classes.
The incoherent $\mathrm{J}/\psi$ photoproduction cross section as a function of photon-nuclear center-of-mass energy per nucleon $W_{\gamma \mathrm{N}}^{\mathrm{Pb}}$ or Bjorken $x$, measured in PbPb ultra-peripheral collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV. The $W_{\gamma \mathrm{N}}^{\mathrm{Pb}}$ values used correspond to the center of each rapidity range. The theoretical uncertainties is due to the uncertainties in the photon flux.
The jet axis decorrelation in inclusive jets is studied using lead-lead (PbPb) collisions at a center-of-mass energy per nucleon pair of 5.02 TeV. The jet axis decorrelation is defined as the angular difference between two definitions of the jet axis. It is obtained by applying two recombination schemes on all the constituents of a given jet reconstructed by the anti-$k_\mathrm{T}$ sequential algorithm with a distance parameter of $R$ = 0.4. The data set, corresponding to an integrated luminosity of 0.66 nb$^{-1}$, was collected in 2018 with the CMS detector at the CERN LHC. The jet axis decorrelations are examined across collision centrality selections and intervals of jet transverse momentum. A centrality dependent evolution of the measured distributions is observed, with a progressive narrowing seen in more central events. This narrowing could result from medium-induced modification of the internal jet structure or reflect color charge effects in energy loss. This new measurement probes jet substructure in previously unexplored kinematic domains and show great promise for providing new insights on the color charge dependence of energy loss to jet-quenching models.
The unfolded jet axis decorrelation distribution,$\frac{1}{N} \frac{dN}{d\Delta j}$, as a function of $\Delta j$ for the $0-10\%$, $10-30\%$, $30-50\%$, and $50-80\%$ centrality bins in the $120 < p_{\mathrm{T}} < 150$ GeV interval.
The unfolded jet axis decorrelation distribution,$\frac{1}{N} \frac{dN}{d\Delta j}$, as a function of $\Delta j$ for the $0-10\%$, $10-30\%$, $30-50\%$, and $50-80\%$ centrality bins in the $150 < p_{\mathrm{T}} < 190$ GeV interval.
The unfolded jet axis decorrelation distribution,$\frac{1}{N} \frac{dN}{d\Delta j}$, as a function of $\Delta j$ for the $0-10\%$, $10-30\%$, $30-50\%$, and $50-80\%$ centrality bins in the $190 < p_{\mathrm{T}} < 230$ GeV interval.