Date

Constraints on standard model effective field theory for a Higgs boson produced in association with W or Z bosons in the H$\to\mathrm{b\bar{b}}$ decay channel in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
JHEP 03 (2025) 114, 2025.
Inspire Record 2852160 DOI 10.17182/hepdata.155497

A standard model effective field theory (SMEFT) analysis with dimension-six operators probing nonresonant new physics effects is performed in the Higgs-strahlung process, where the Higgs boson is produced in association with a W or Z boson, in proton-proton collisions at a center-of-mass energy of 13 TeV. The final states in which the W or Z boson decays leptonically and the Higgs boson decays to a pair of bottom quarks are considered. The analyzed data were collected by the CMS experiment between 2016 and 2018 and correspond to an integrated luminosity of 138 fb$^{-1}$. An approach designed to simultaneously optimize the sensitivity to Wilson coefficients of multiple SMEFT operators is employed. Likelihood scans as functions of the Wilson coefficients that carry SMEFT sensitivity in this final state are performed for different expansions in SMEFT. The results are consistent with the predictions of the standard model.

32 data tables

Summary of results in terms of best fit value of the Wilson coefficients and the intervals where the test statistic is below 1 and 4, with up to the linear and quadratic terms in the SMEFT parameterization.

Profiled limits on the energy scale $\Lambda$ for three different assumptions for each Wilson coefficient while fixing the other Wilson coefficients to their SM values with up to the linear and quadratic terms in SMEFT parameterization.

Observed two-dimensional likelihood scans for $c_{Hq}^{(1)}$ vs. $c_{Hq}^{(3)}$ while allowing the other coefficients to float freely at each point of the sca.

More…

Version 2
Search for a heavy resonance decaying into a Z and a Higgs boson in events with an energetic jet and two electrons, two muons, or missing transverse momentum in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 02 (2025) 089, 2025.
Inspire Record 2847311 DOI 10.17182/hepdata.153397

A search is presented for a heavy resonance decaying into a Z boson and a Higgs (H) boson. The analysis is based on data from proton-proton collisions at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 138 fb$^{-1}$, recorded with the CMS experiment in the years 2016-2018. Resonance masses between 1.4 and 5 TeV are considered, resulting in large transverse momenta of the Z and H bosons. Final states that result from Z boson decays to pairs of electrons, muons, or neutrinos are considered. The H boson is reconstructed as a single large-radius jet, recoiling against the Z boson. Machine-learning flavour-tagging techniques are employed to identify decays of a Lorentz-boosted H boson into pairs of charm or bottom quarks, or into four quarks via the intermediate H $\to$ WW* and ZZ* decays. The analysis targets H boson decays that were not generally included in previous searches using the H $\to$$\mathrm{b\bar{b}}$ channel. Compared with previous analyses, the sensitivity for high resonance masses is improved significantly in the channel where at most one b quark is tagged.

16 data tables

The product of signal acceptance and efficiency for signal events as a function of $m_{Z'}$ for the charged-lepton and neutrino channels in the SR. The efficiency is calculated with respect to Z boson decays to charged leptons and neutrinos for the charged-lepton and neutrino channels, respectively. For comparison, the results from the $\leq$ 1 b category of the previous CMS search in the ZH channel are shown as dashed lines.

The product of signal acceptance and efficiency for signal events as a function of $m_{Z'}$ for the charged-lepton and neutrino channels in the SR. The efficiency is calculated with respect to Z boson decays to charged leptons and neutrinos for the charged-lepton and neutrino channels, respectively. For comparison, the results from the $\leq$ 1 b category of the previous CMS search in the ZH channel are shown as dashed lines.

Distributions in $m_{Z'}^{rec}$ for data in the SRs, together with fits of the background functions under the background-only hypothesis for the muon channel. The number of observed events in each bin is divided by the bin width. The signal predictions are shown for different Z' boson masses, normalized to an arbitrary cross section of 1 fb. In the panels below the distributions, the ratios of data to the background function are displayed. The shaded green areas represent the statistical uncertainty from the fit. The $\chi^2$ values per number of degrees of freedom ($\chi^2$/n.d.f.) and the corresponding $p$-values are provided for each fit.

More…

Measurement of the inclusive $\mathrm{t\bar{t}}$ cross section in final states with at least one lepton and additional jets with 302 pb$^{-1}$ of pp collisions at $\sqrt{s}$ = 5.0 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 04 (2025) 099, 2025.
Inspire Record 2844500 DOI 10.17182/hepdata.150676

A measurement of the top quark pair ($\mathrm{t\bar{t}}$) production cross section in proton-proton collisions at a centre-of-mass energy of 5.02 TeV is presented. The data were collected at the LHC in autumn 2017, in dedicated runs with low-energy and low-intensity conditions with respect to the default configuration, and correspond to an integrated luminosity of 302 pb$^{-1}$. The measurement is performed using events with one electron or muon, and multiple jets, at least one of them being identified as b quark (b tagged). Events are classified based on the number of all reconstructed jets and of b-tagged jets. Multivariate analysis techniques are used to enhance the separation between the signal and backgrounds. The measured cross section is 62.5 $\pm$ 1.6 (stat) $^{+2.6}_{-2.5}$ (syst) $\pm$ 1.2 (lumi) pb. A combination with the result in the dilepton channel based on the same data set yields a value of 62.3 $\pm$ 1.5 (stat) $\pm$ 2.4 (syst) $\pm$ 1.2 (lumi) pb, to be compared with the standard model prediction of 69.5$^{+3.5}_{-3.7}$ pb at next-to-next-to-leading order in perturbative quantum chromodynamics.

11 data tables

Distributions for data and expected signal and background contributions of the most discriminating input variables (\ensuremath{\Delta R_\mathrm{med}(\mathrm{j,j')}}) used for the random forest training, in the 3j1b category, before the maximum likelihood fit. The vertical error bars represent the statistical uncertainty in the data, and the shaded band the uncertainty in the prediction. All uncertainties considered in the analysis are included in the uncertainty band. The lower panels show the data-to-prediction ratio. The first and last bins in each distribution include underflow and overflow events, respectively.

Distributions for data and expected signal and background contributions of the most discriminating input variables (\ensuremath{\mathit{m}(\mathrm{u},\mathrm{u'})}) used for the random forest training, in the 3j1b category, before the maximum likelihood fit. The vertical error bars represent the statistical uncertainty in the data, and the shaded band the uncertainty in the prediction. All uncertainties considered in the analysis are included in the uncertainty band. The lower panels show the data-to-prediction ratio. The first and last bins in each distribution include underflow and overflow events, respectively.

Distributions for data and expected signal and background contributions of the MVA score for the e + jets channel in the 3j1b category, before the maximum likelihood fit. The vertical error bars represent the statistical uncertainty in the data, and the shaded band the uncertainty in the prediction. All uncertainties considered in the analysis are included in the uncertainty band. The lower panels show the data-to-prediction ratio. The first and last bins in each distribution include underflow and overflow events, respectively.

More…

Search for pair production of heavy particles decaying to a top quark and a gluon in the lepton+jets final state in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 85 (2025) 342, 2025.
Inspire Record 2844507 DOI 10.17182/hepdata.155498

A search is presented for the pair production of new heavy resonances, each decaying into a top quark (t) or antiquark and a gluon (g). The analysis uses data recorded with the CMS detector from proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. Events with one muon or electron, multiple jets, and missing transverse momentum are selected. After using a deep neural network to enrich the data sample with signal-like events, distributions in the scalar sum of the transverse momenta of all reconstructed objects are analyzed in the search for a signal. No significant deviations from the standard model prediction are found. Upper limits at 95% confidence level are set on the product of cross section and branching fraction squared for the pair production of excited top quarks in the $\mathrm{t^*}$ $\to$ tg decay channel. The upper limits range from 120 to 0.8 fb for a $\mathrm{t^*}$ with spin-1/2 and from 15 to 1.0 fb for a $\mathrm{t^*}$ with spin-3/2. These correspond to mass exclusion limits up to 1050 and 1700 GeV for spin-1/2 and spin-3/2 $\mathrm{t^*}$ particles, respectively. These are the most stringent limits to date on the existence of $\mathrm{t^*}$ $\to$ tg resonances.

4 data tables

Expected and observed 95% CL upper limits on the product of the $t^{*} \overline{t}^{*}$ production cross section and the branching fraction squared $BR^2(t^{*} \rightarrow tg)$ for a spin-1/2 $t^{*}$ as a function of $m_{t^{*}}$. The inner (green) and outer (yellow) bands give the central probability intervals containing 68 and 95% of the expected upper limits under the background-only hypothesis. The cross section predicted by theory, following an EFT approach, is shown in blue, assuming $BR(t^{*} \rightarrow tg)=1$.

Expected and observed 95% CL upper limits on the product of the $t^{*} \overline{t}^{*}$ production cross section and the branching fraction squared $BR^2(t^{*} \rightarrow tg)$ for a spin-3/2 $t^{*}$ as a function of $m_{t^{*}}$. The inner (green) and outer (yellow) bands give the central probability intervals containing 68 and 95% of the expected upper limits under the background-only hypothesis. The cross section predicted by theory, following an EFT approach, is shown in blue, assuming $BR(t^{*} \rightarrow tg)=1$. The results of the previous CMS analysis, using data corresponding to an integrated luminosity of 35.9 $fb^{-1}$, are shown in red.

Distributions in $S_T$ in the SR for the muon channel, after a background-only fit to the data. The signal distributions are scaled to the cross section predicted by the theory. The hatched bands show the post-fit uncertainty band, combining all sources of uncertainty. The ratio of data to the background predictions is shown in the panels below the distributions.

More…

Search for heavy long-lived charged particles with large ionization energy loss in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 04 (2025) 109, 2025.
Inspire Record 2840007 DOI 10.17182/hepdata.153850

A search for heavy, long-lived, charged particles with large ionization energy loss within the silicon tracker of the CMS experiment is presented. A data set of proton-proton collisions at a center of mass energy at $\sqrt{s}$ = 13 TeV, collected in 2017 and 2018 at the CERN LHC, corresponding to an integrated luminosity of 101 fb$^{-1}$, is used in this analysis. Two different approaches for the search are taken. A new method exploits the independence of the silicon pixel and strips measurements, while the second method improves on previous techniques using ionization to determine a mass selection. No significant excess of events above the background expectation is observed. The results are interpreted in the context of the pair production of supersymmetric particles, namely gluinos, top squarks, and tau sleptons, and of the Drell-Yan pair production of fourth generation ($\tau'$) leptons with an electric charge equal to or twice the absolute value of the electron charge ($e$). An interpretation of a Z$'$ boson decaying to two $\tau'$ leptons with an electric charge equal to 2$e$ is presented for the first time. The 95% confidence upper limits on the production cross section are extracted for each of these hypothetical particles.

59 data tables

The $F_{\text{i}}^{\text{Pixels}}$ vs $G_{\text{i}}^{\text{Strips}}$ distribution for the SM MC after passing the selection criteria listed in Table 2.

The $F_{\text{i}}^{\text{Pixels}}$ vs $G_{\text{i}}^{\text{Strips}}$ distribution the 1800 GeV mass gluino R-hadron (right), after passing the selection criteria listed in Table 2.

The $G_{\text{i}}^{\text{Strips}}$ distribution in the FAIL region for events passing the event selection and with $55 < p_{\mathrm{T}} < 200$ GeV.

More…

Energy-scaling behavior of intrinsic transverse momentum parameters in Drell-Yan simulation

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 111 (2025) 072003, 2025.
Inspire Record 2839223 DOI 10.17182/hepdata.154142

An analysis is presented based on models of the intrinsic transverse momentum (intrinsic $k_\mathrm{T}$) of partons in nucleons by studying the dilepton transverse momentum in Drell-Yan events. Using parameter tuning in event generators and existing data from fixed-target experiments and from hadron colliders, our investigation spans three orders of magnitude in center-of-mass energy and two orders of magnitude in dilepton invariant mass. The results show an energy-scaling behavior of the intrinsic $k_\mathrm{T}$ parameters, independent of the dilepton invariant mass at a given center-of-mass energy.

45 data tables

Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP5 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.

Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP4 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.

Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP3 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.

More…

Measurements of polarization and spin correlation and observation of entanglement in top quark pairs using lepton+jets events from proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 110 (2024) 112016, 2024.
Inspire Record 2829523 DOI 10.17182/hepdata.153301

Measurements of the polarization and spin correlation in top quark pairs ($\mathrm{t\bar{t}}$) are presented using events with a single electron or muon and jets in the final state. The measurements are based on proton-proton collision data from the LHC at $\sqrt{s}$ = 13 TeV collected by the CMS experiment, corresponding to an integrated luminosity of 138 fb$^{-1}$. All coefficients of the polarization vectors and the spin correlation matrix are extracted simultaneously by performing a binned likelihood fit to the data. The measurement is performed inclusively and in bins of additional observables, such as the mass of the $\mathrm{t\bar{t}}$ system and the top quark scattering angle in the $\mathrm{t\bar{t}}$ rest frame. The measured polarization and spin correlation are in agreement with the standard model. From the measured spin correlation, conclusions on the $\mathrm{t\bar{t}}$ spin entanglement are drawn by applying the Peres-Horodecki criterion. The standard model predicts entangled spins for $\mathrm{t\bar{t}}$ states at the production threshold and at high masses of the $\mathrm{t\bar{t}}$ system. Entanglement is observed for the first time in events at high $\mathrm{t\bar{t}}$ mass, where a large fraction of the $\mathrm{t\bar{t}}$ decays are space-like separated, with an expected and observed significance of above 5 standard deviations.

40 data tables

Results for full matrix measurement inclusive from $m(t\bar{t})$

Covariance for full matrix measurement inclusive from $m(t\bar{t})$

Results for full matrix measurement all bins from $m(t\bar{t})$ fit

More…

Bottom quark energy loss and hadronization with B$^+$ and B$^0_\mathrm{s}$ nuclear modification factors using pp and \PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 02 (2025) 195, 2025.
Inspire Record 2829186 DOI 10.17182/hepdata.152831

The production cross sections of B$^0_\mathrm{s}$ and B$^+$ mesons are reported in proton-proton (pp) collisions recorded by the CMS experiment at the CERN LHC with a center-of-mass energy of 5.02 TeV. The data sample corresponds to an integrated luminosity of 302 pb$^{-1}$. The cross sections are based on measurements of the B$^0_\mathrm{s}$$\to$ J/$\psi(\mu^+\mu^-)\phi$(1020)(K$^+$K$^-$) and B$^+$$\to$ J/$\psi(\mu^+\mu^-)$K$^+$ decay channels. Results are presented in the transverse momentum ($p_\mathrm{T}$) range 7-50 GeV/$c$ and the rapidity interval $\lvert y \rvert$$\lt$ 2.4 for the B mesons. The measured $p_\mathrm{T}$-differential cross sections of B$^+$ and B$^0_\mathrm{s}$ in pp collisions are well described by fixed-order plus next-to-leading logarithm perturbative quantum chromodynamics calculations. Using previous PbPb collision measurements at the same nucleon-nucleon center-of-mass energy, the nuclear modification factors, $R_\mathrm{AA}$, of the B mesons are determined. For $p_\mathrm{T}$$\lt$ 10 GeV/$c$, both mesons are found to be suppressed in PbPb collisions (with $R_\mathrm{AA}$ values significantly below unity), with less suppression observed for the B$^0_\mathrm{s}$ mesons. In this $p_\mathrm{T}$ range, the $R_\mathrm{AA}$ values for the B$^+$ mesons are consistent with those for inclusive charged hadrons and D$^0$ mesons. Below 10 GeV/$c$, both B$^+$ and B$^0_\mathrm{s}$s are found to be less suppressed than either inclusive charged hadrons or D$^0$ mesons, with the B$^0_\mathrm{s}$$R_\mathrm{AA}$ value consistent with unity. The $R_\mathrm{AA}$ values found for the B$^+$ and B$^0_\mathrm{s}$ are compared to theoretical calculations, providing constraints on the mechanism of bottom quark energy loss and hadronization in the quark-gluon plasma, the hot and dense matter created in ultrarelativistic heavy ion collisions.

4 data tables

The B+ meson $p_{\rm{T}}$-dependent production cross section in pp collisions. The measurment was carried out inside a fiducial region respecting ($p_{\rm{T}}$<10 & 1.5<|y|<2.4) and ($p_{\rm{T}}$>10 & |y|<2.4). The luminosity is 302.3 pb^{-1}.

The Bs meson $p_{\rm{T}}$-dependent production cross section in pp collisions. The measurment was carried out inside a fiducial region respecting (pT<10 & 1.5<|y|<2.4) and ($p_{\rm{T}}$>10 & |y|<2.4). The luminosity is 302.3 pb^{-1}.

The B+ meson $p_{\rm{T}}$-dependent RAA in PpPp. The measurment was carried out inside a fiducial region respecting ($p_{\rm{T}}$<10 & 1.5<|y|<2.4) and ($p_{\rm{T}}$>10 & |y|<2.4).

More…

Version 2
Measurement of inclusive and differential cross sections of single top quark production in association with a W boson in proton-proton collisions at $\sqrt{s}$ = 13.6 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 01 (2025) 107, 2025.
Inspire Record 2827552 DOI 10.17182/hepdata.150675

The first measurement of the inclusive and normalised differential cross sections of single top quark production in association with a W boson in proton-proton collisions at a centre-of-mass energy of 13.6 TeV is presented. The data were recorded with the CMS detector at the LHC in 2022, and correspond to an integrated luminosity of 34.7 fb$^{-1}$. The analysed events contain one muon and one electron in the final state. For the inclusive measurement, multivariate discriminants exploiting the kinematic properties of the events are used to separate the signal from the dominant top quark-antiquark production background. A cross section of 82.3 $\pm$ 2.1 (stat) ${}^{+9.9}_{-9.7}$ (syst) $\pm$ 3.3 (lumi) pb is obtained, consistent with the predictions of the standard model. A fiducial region is defined according to the detector acceptance to perform the differential measurements. The resulting differential distributions are unfolded to particle level and show good agreement with the predictions at next-to-leading order in perturbative quantum chromodynamics.

54 data tables

The distribution of the RF output for events in the 1j1b region. The number of observed events (points) and estimated signal and background events (filled histograms) from the maximum likelihood fit are shown. The vertical bars on the points represent the statistical uncertainty in the data, and the hatched band the total uncertainty in the estimated events after the fit. The lower panels display the ratio of the data to the sum of the estimated events (points) after the fit, with the bands giving the corresponding uncertainties.

Distribution of the RF output for events in the 1j1b region. The number of observed events (points) and estimated signal and background events (filled histograms) before the maximum likelihood fit are shown. The vertical bars on the points represent the statistical uncertainty in the data, and the hatched band the total uncertainty in the estimated events before the fit. The lower panels display the ratio of the data to the sum of the estimated events (points) before the fit, with the bands giving the corresponding uncertainties.

The distribution of the RF output for events in the 2j1b region. The number of observed events (points) and estimated signal and background events (filled histograms) from the maximum likelihood fit are shown. The vertical bars on the points represent the statistical uncertainty in the data, and the hatched band the total uncertainty in the estimated events after the fit. The lower panels display the ratio of the data to the sum of the estimated events (points) after the fit, with the bands giving the corresponding uncertainties.

More…

Search for dark matter produced in association with a pair of bottom quarks in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 02 (2025) 050, 2025.
Inspire Record 2823922 DOI 10.17182/hepdata.152385

A search for dark matter (DM) particles produced in association with bottom quarks is presented. The analysis uses proton-proton collision data at a center-of-mass energy of $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. The search is performed in the final state with large missing transverse momentum and a pair of jets originating from bottom quarks. No significant excess of data is observed with respect to the standard model expectation. Results are interpreted in the context of a type-II two-Higgs-doublet model with an additional light pseudoscalar (2HDM+a). An upper limit is set on the mass of the lighter pseudoscalar, excluding masses up to 260 GeV at 95% confidence level. Sensitivity to the parameter space with the ratio of the vacuum expectation values of the two Higgs doublets, $\tan\beta$, greater than 15 is achieved, capitalizing on the enhancement of couplings between pseudoscalars and bottom quarks with high $\tan\beta$.

13 data tables

Normalized (to unity) shape of generator-level $p_{T}^{miss}$ distribution for two illustrative lighter pseudoscalar masses $m_a$ (left).

Normalized (to unity) shape of generator-level $p_{T}^{miss}$ distribution for five illustrative DM masses $m_{\chi}$ (right).

QCD background contribution in the QCD CR (black and pink dots) in the 2b category using 2017 data. The exponential is fitted in the range min$(\Delta\phi({jet,\vec{p}_T^{\;miss}})<0.3$, checked to fit well in the range $0.3<\Delta\phi({jet,\vec{p}_T^{\;miss}})<0.5$, and extrapolated to the SRs for $\Delta\phi({jet,\vec{p}_T^{\;miss}})>0.5$. The process is performed for 1b as well as 2b category for all years.

More…