Polarization in π − p elastic scattering, with emphasis over the backward region, has been measured at 2.93 and 3.25 GeV/ c . We observe large changes in polarization compared with existing data above and below these energies. Our data may be useful in determining the properties of resonances and in understanding baryon exchanges.
THESE DATA, TOGETHER WITH THE FORWARD SCATTERING POLARIZATION MEASUREMENTS, ARE TABULATED IN THE RECORD OF P. AUER ET AL., PRL 37, 83 (1976).
Data on polarization in backward elastic π + p scattering at 2.0, 3.5 and 4.0 GeV/ c are presented. The data at 2.0 GeV/ c are compared with the result of a recent phase-shift analysis. Our data at 3.5 and 4.0 GeV/ c , and existing data above 3 GeV/ c , show no significant energy dependence of the polarization over the measured u -range. A comparison with Regge models and with results from amplitude analysis is made.
No description provided.
No description provided.
No description provided.
Polarization in π−p elastic scattering, with emphasis in the region around the secondary dip and also θc.m.=90°, has been measured at 2.93 and 3.25 GeV/c. We observe an interesting sign change in this angular region.
No description provided.
No description provided.
The differential cross sections for π + p elastic scattering at0.6, 1.0, 1.5, 2.0, GeV/ c for π - p at 1.0, 1.5, 2.0 GeV/ c , for K - p at 1.2, 1.8, 2.6 GeV/ c and for K - p at 0.9, 1.2, 1.4, 1.6, 1.8, 2.6 GeV/ c have been measured with an overall accuracy ofthe order of 1 to 2% in an electronics experiment over the angular region corresponding to momentum transfer t between 0.0005 and 0.10 GeV 2 . Making use of the interference effects between the Coulomb and the nuclear interaction, we have determined the magnitude and sign of the real part of the scattering amplitude near t = 0. The K ± p real parts have been used in a dispersion relation to derive the value of the KNΛ coupling constant.
'TABLE'. 'BIN'.
'TABLE'. 'BIN'.
'TABLE'. 'BIN'.
Angular distributions of π + and K + p elastic scattering have been measured for an incident beam momentum of 10.0 GeV/ c . For π + p elastic scattering almost the complete angular distribution was measured. The angular distribution of proton-proton elastic scattering was measured for an incident momentum of 9.0 GeV/ c in the interval of the four-momentum transfer squared from 0.7 (GeV/ c ) 2 to 5.0 (GeV/ v ) 2 . For π + p elastic scattering the structures at − t = 2.8 (GeV/ c ) 2 and − t = 4.8 (GeV/ c ) 2 are less pronounced than at lower momenta. The cross section for scattering at 90° in the c.m. system is of the order of 1 nb/GeV/ c ) 2 . For K + p elastic scattering is a break in the angular distribution around − t = 3 (GeV/ c ) 2 . The differential cross sections for proton-proton elastic scattering decrease smoothly with increasing momentum transfers.
S=19.667 GEV**2, U=-T-17.867 GEV**2.
S=19.91 GEV**2, U=-T-17.704 GEV**2.
S=18.74 GEV**2.
The ratio of the analysing powers for quasi-elastic pp scattering in carbon and for elastic scattering on free protons was measured fromT = 0.52 to 2.8 GeV by scattering of the SATURNE II polarized proton beam on carbon and CH2. It was found to have a maximum at about 0.8 GeV. The energy dependence for quasielastic scattering on carbon had not been measured before above 1 GeV. The observed effect was not expected from simple models.
No description provided.
This work extends our previous investigations at the CERN Intersecting Storage Rings, with improved statistics at three different energies, wider angular range and a better control over systematic errors. Values for the (diffraction) shape parameter b are given.
No description provided.
No description provided.
No description provided.
The spin-rotation parameters A and R and the related spin-rotation angle β have been measured for π+p and π−p elastic scattering using protons polarized in the scattering plane. The pion-beam momenta are 427, 471, 547, 625, and 657 MeV/c and the angular range is −0.9≤cosΘc.m.≤0.3. The scattered pion and recoil proton were detected in coincidence, using a scintillator hodoscope for the pions, and the Large Acceptance Spectrometer combined with the JANUS polarimeter for the recoil protons. The results are compared with the four recent πN partial wave analyses (PWA's). Our data show that the major features of these PWA's are correct. The A and R measurements complete our program of pion-nucleon experiments, providing full data sets at three of the above beam momenta. Such sets can be used to test the constraints in the PWA's or to obtain a model-independent set of πN scattering amplitudes.
BETA is the spin-rotation angle.
BETA is the spin-rotation angle.
BETA is the spin-rotation angle.
The Wolfenstein parameters D, R, and A and the polarization parameter P have been measured for p−p elastic scattering at 312, 392, 493, and 575 MeV kinetic energy. The center-of-mass angular range observed was from 3° to 33°. The experiment was performed at SIN, using a polarized proton beam. These data significantly improve the determination of I=1 phase shifts.
No description provided.
No description provided.
No description provided.
Using the polarized-beam facility at Argonne National Laboratory and a polarized proton target, simultaneous measurements of the spin parameter P and the spin correlation term CNN were made. Data were obtained and analyzed at beam momenta of 2, 3, 4, and 6 GeV/c in the momentum-transfer-squared interval 0.1≤|t|≤2.8 (GeV/c)2. A preliminary phase-shift analysis of the 2- and 3-GeV/c data is discussed and a comparison with predictions of a particular Regge-pole model at all four energies is made.
No description provided.
No description provided.
No description provided.