The muon anomalous magnetic moment has been measured in a new experiment at Brookhaven. Polarized muons were stored in a superferric ring, and the angular frequency difference, ωa, between the spin precession and orbital frequencies was determined by measuring the time distribution of high-energy decay positrons. The ratio R of ωa to the Larmor precession frequency of free protons, ωp, in the storage-ring magnetic field was measured. We find R=3.707220(48)×10−3. With μμ/μp=3.18334547(47) this gives aμ+=1165925(15)×10−9 ( ±13ppm), in good agreement with the previous CERN measurements for μ+ and μ− and of approximately the same precision.
The anomalous g value is related to the gyromagnetic ratio by MOM(NAME=ANOMALOUS MAGNETIC) = (G-2)/2. The beam momentum spread is about 1 PCT.
A precise measurement of the anomalous g value, a_mu=(g-2)/2, for the positive muon has been made at the Brookhaven Alternating Gradient Synchrotron. The result a_mu^+=11 659 202(14)(6) X 10^{-10} (1.3 ppm) is in good agreement with previous measurements and has an error one third that of the combined previous data. The current theoretical value from the standard model is a_mu(SM)=11 659 159.6(6.7) X 10^{-10} (0.57 ppm) and a_mu(exp)-a_mu(SM)=43(16) X 10^{-10} in which a_mu(exp) is the world average experimental value.
The anomalous G value is related to the gyromagnetic ratio by MOM(N=A_MU) =(G-2)/2.
A new measurement of the positive muon's anomalous magnetic moment has been made at the Brookhaven Alternating Gradient Synchrotron using the direct injection of polarized muons into the superferric storage ring. The angular frequency difference omega_{a} between the angular spin precession frequency omega_{s} and the angular orbital frequency omega_{c} is measured as well as the free proton NMR frequency omega_{p}. These determine R = omega_{a} / omega_{p} = 3.707~201(19) times 10^{-3}. With mu_{mu} / mu_{p} = 3.183~345~39(10) this gives a_{mu^+} = 11~659~191(59) times 10^{-10} (pm 5 ppm), in good agreement with the previous CERN and BNL measurements for mu^+ and mu^-, and with the standard model prediction.
The anomalous g value is related to the gyromagnetic ratio by MOM(NAME=ANOMALOUS MAGNETIC) = (G-2)/2. The beam momentum spread is about 1 PCT.
A complete set of polarization-transfer observables has been measured for quasifree (p→,n→) reactions on H2, C12, and Ca40 at a bombarding energy of 495 MeV and a laboratory scattering angle of 18°. The data span an energy-loss range from 0 to 160 MeV, with a corresponding momentum transfer range of qc.m.=1.7–1.9 fm−1. The laboratory observables are used to construct partial cross sections proportional to the nonspin response and three orthogonal spin responses. These results are compared to the transverse spin response measured in deep inelastic electron scattering and to nuclear responses based on the random phase approximation. The polarization observables for all three targets are remarkably similar and reveal no evidence for an enhancement of the spin-longitudinal nuclear response relative to the spin-transverse response. These results suggest the need for substantial modifications to the standard form assumed for the residual particle-hole interaction.
No description provided.
No description provided.
No description provided.
Antiproton-proton elastic scattering was measured at c.m.s. energies √s =546 and 1800 GeV in the range of four-momentum transfer squared 0.025<-t<0.29 GeV2. The data are well described by the exponential form ebt with a slope b=15.28±0.58 (16.98±0.25) GeV−2 at √s =546 (1800) GeV. The elastic scattering cross sections are, respectively, σel=12.87±0.30 and 19.70±0.85 mb.
Final results (systematic errors included).
Final results (systematic errors included).
Statistical errors only. Data supplied by S. Belforte.
We present results from the initial run of Fermilab experiment E706. The data include incident π− and p beams at 500 GeV/c on Be and Cu targets, and span the kinematic ranges of transverse momentum and rapidity of 3.5≤pT≤10 GeV/c and −0.7≤yc.m.≤0.7, respectively. We have measured cross sections for π0 and direct-photon production, as well as the ηπ0 production ratio. From the data on Be and Cu, we have extracted the nuclear dependence of π0 production, parametrized as Aα. The cross sections are compared with next-to-leading-log QCD predictions for different choices of the QCD momentum scales and several sets of parton distribution functions.
No description provided.
No description provided.
No description provided.
Measurements of the ratio of Drell-Yan yields from an 800 \rm{GeV/c} proton beam incident on liquid hydrogen and deuterium targets are reported. Approximately 360,000 Drell-Yan muon pairs remained after all cuts on the data. From these data, the ratio of anti-down ($\bar{d}$) to anti-up ($\bar{u}$) quark distributions in the proton sea is determined over a wide range in Bjorken-$x$. These results confirm previous measurements by E866 and extend them to lower $x$. From these data, $(\bar{d}-\bar{u})$ and $\int(\bar{d}-\bar{u})dx$ are evaluated for $0.015<x<0.35$. These results are compared with parameterizations of various parton distribution functions, models and experimental results from NA51, NMC, and HERMES.
Cross section ratio for the high mass data set. Additional systematic error is 0.97 PCT for this data set.
Cross section ratio for the intermediate mass data set. Additional systematic error is 0.94 PCT for this data set.
Cross section ratio for the low mass data set. Additional systematic error is 0.87 PCT for this data set.
Measurements of the cross section for production of massive dihadrons by 800-GeV protons incident on a tungsten target are presented. These are compared with measurements taken at lower and higher s and with perturbative-QCD predictions. Scaling and A-dependence behaviors observed at lower energies are confirmed, and good agreement with QCD is obtained. Model dependences of earlier measurements are discussed.
No description provided.
Triple differential cross section. Note that the errors plotted in the original figure are 2 time too large. The numbers given here are correct.
We present a measurement of the polarization observed for bottomonium states produced in p-Cu collisions at sqrt(s)=38.8 GeV. The angular distribution of the decay dimuons of the Upsilon(1S) state show no polarization at small xF and pT but significant positive transverse production polarization for either pT > 1.8 GeV/c or for xF > 0.35. The Upsilon(2S+3S) unresolved states show a large transverse production polarization at all values of xF and pT measured. These observations are compared with an NRQCD calculation that predicts a transverse polarization in bottomonium production arising from quark-antiquark fusion and gluon-gluon fusion diagrams.
The observed polarization in the Drell-Yan sideband region as a function of PT. There is an additional systematic uncertainty of 0.02 in the polarization measurements.
The observed polarization in the Drell-Yan sideband region as a function of XL. There is an additional systematic uncertainty of 0.02 in the polarization measurements.
The observed polarization in the UPSILON(1S) region as a function of PT. There is an additional systematic error of 0.06 in the polarization measurements.
An analysis of W- and Z-boson production using data from the Collider Detector at Fermilab at √s =1.8 TeV yields σ(W→ev)/σ(Z→ee)=10.2±0.8(stat)±0.4(syst). The width of the W boson, Γ(W), and a limit on the top-quark mass independent of decay mode are extracted from this measurement.
No description provided.