Date

Measurement of differential cross sections for single diffractive dissociation in $\sqrt{s} = 8$ TeV $pp$ collisions using the ATLAS ALFA spectrometer

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 02 (2020) 042, 2020.
Inspire Record 1762584 DOI 10.17182/hepdata.93063

A dedicated sample of Large Hadron Collider proton-proton collision data at centre-of-mass energy $\sqrt{s}=8$ TeV is used to study inclusive single diffractive dissociation, $pp \rightarrow Xp$. The intact final-state proton is reconstructed in the ATLAS ALFA forward spectrometer, while charged particles from the dissociated system $X$ are measured in the central detector components. The fiducial range of the measurement is $-4.0 < \log_{10} \xi < -1.6$ and $0.016 < |t| < 0.43 \ {\rm GeV^2}$, where $\xi$ is the proton fractional energy loss and $t$ is the squared four-momentum transfer. The total cross section integrated across the fiducial range is $1.59 \pm 0.13 \ {\rm mb}$. Cross sections are also measured differentially as functions of $\xi$, $t$, and $\Delta \eta$, a variable that characterises the rapidity gap separating the proton and the system $X$. The data are consistent with an exponential $t$ dependence, ${\rm d} \sigma / {\rm d} t \propto \text{e}^{Bt}$ with slope parameter $B = 7.65 \pm 0.34 \ {\rm GeV^{-2}}$. Interpreted in the framework of triple Regge phenomenology, the $\xi$ dependence leads to a pomeron intercept of $\alpha(0) = 1.07 \pm 0.09$.

0 data tables match query

Determination of the strong coupling constant $\alpha_s$ from transverse energy-energy correlations in multijet events at $\sqrt{s} = 8$ TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 872, 2017.
Inspire Record 1609253 DOI 10.17182/hepdata.77269

Measurements of transverse energy-energy correlations and their associated asymmetries in multi-jet events using the ATLAS detector at the LHC are presented. The data used correspond to $\sqrt{s} = 8$ TeV proton-proton collisions with an integrated luminosity of 20.2 fb$^{-1}$. The results are presented in bins of the scalar sum of the transverse momenta of the two leading jets, unfolded to the particle level and compared to the predictions from Monte Carlo simulations. A comparison with next-to-leading-order perturbative QCD is also performed, showing excellent agreement within the uncertainties. From this comparison, the value of the strong coupling constant is extracted for different energy regimes, thus testing the running of $\alpha_s(\mu)$ predicted in QCD up to scales over 1 TeV. A global fit to the transverse energy-energy correlation distributions yields $\alpha_s(m_Z) = 0.1162 \pm 0.0011 \mbox{ (exp.)}^{+0.0084}_{-0.0070} \mbox{ (theo.)}$, while a global fit to the asymmetry distributions yields a value of $\alpha_s(m_Z) = 0.1196 \pm 0.0013 \mbox{ (exp.)}^{+0.0075}_{-0.0045} \mbox{ (theo.)}$.

0 data tables match query

Measurement of the ttbar cross section using high-multiplicity jet events

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.D 82 (2010) 032002, 2010.
Inspire Record 837547 DOI 10.17182/hepdata.52975

We present a measurement of the ttbar cross section using high-multiplicity jet events produced in ppbar collisions at sqrt{s}=1.96 TeV. These data were recorded at the Fermilab Tevatron collider with the D0 detector. Events with at least six jets, two of them identified as b jets, were selected from a 1 fb-1 data set. The measured cross section, assuming a top quark mass of 175 GeV/c^2, is 6.9 \pm 2.0 pb, in agreement with theoretical expectations.

0 data tables match query

Measurement of $\tau$ polarisation in $Z/\gamma^{*}\rightarrow\tau\tau$ decays in proton-proton collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 163, 2018.
Inspire Record 1622745 DOI 10.17182/hepdata.79418

This paper presents a measurement of the polarisation of $\tau$ leptons produced in $Z/\gamma^{*}\rightarrow\tau\tau$ decays which is performed with a dataset of proton-proton collisions at $\sqrt{s}=8$ TeV, corresponding to an integrated luminosity of 20.2 fb$^{-1}$ recorded with the ATLAS detector at the LHC in 2012. The $Z/\gamma^{*}\rightarrow\tau\tau$ decays are reconstructed from a hadronically decaying $\tau$ lepton with a single charged particle in the final state, accompanied by a $\tau$ lepton that decays leptonically. The $\tau$ polarisation is inferred from the relative fraction of energy carried by charged and neutral hadrons in the hadronic $\tau$ decays. The polarisation is measured in a fiducial region that corresponds to the kinematic region accessible to this analysis. The $\tau$ polarisation extracted over the full phase space within the $Z/\gamma^{*}$ mass range of 66$ < m_{Z/\gamma^{*}} < $ 116 GeV is found to be $P_{\tau} =-0.14 \pm 0.02 (\text{stat}) \pm 0.04 (\text{syst})$. It is in agreement with the Standard Model prediction of $P_{\tau} =-0.1517 \pm 0.0019$, which is obtained from the ALPGEN event generator interfaced with the PYTHIA 6 parton shower modelling and the TAUOLA $\tau$ decay library.

0 data tables match query

Search for Higgs boson decays into a $Z$ boson and a light hadronically decaying resonance using 13 TeV $pp$ collision data from the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 125 (2020) 221802, 2020.
Inspire Record 1789583 DOI 10.17182/hepdata.93626

A search for Higgs boson decays into a $Z$ boson and a light resonance in two-lepton plus jet events is performed, using a $pp$ collision dataset with an integrated luminosity of 139 fb$^{-1}$ collected at $\sqrt{s}=13$ TeV by the ATLAS experiment at the CERN LHC. The resonance considered is a light boson with a mass below 4 GeV from a possible extended scalar sector, or a charmonium state. Multivariate discriminants are used for the event selection and for evaluating the mass of the light resonance. No excess of events above the expected background is found. Observed (expected) 95$\% $ confidence-level upper limits are set on the Higgs boson production cross section times branching fraction to a $Z$ boson and the signal resonance, with values in the range 17 pb to 340 pb ($16^{+6}_{-5}$ pb to $320^{+130}_{-90}$ pb) for the different light spin-0 boson mass and branching fraction hypotheses, and with values of 110 pb and 100 pb ($100^{+40}_{-30}$ pb and $100^{+40}_{-30}$ pb) for the $\eta_c$ and $J/\psi$ hypotheses, respectively.

0 data tables match query

Measurement of charged-particle distributions sensitive to the underlying event in $\sqrt{s} = 13$ TeV proton-proton collisions with the ATLAS detector at the LHC

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 03 (2017) 157, 2017.
Inspire Record 1509919 DOI 10.17182/hepdata.76730

We present charged-particle distributions sensitive to the underlying event, measured by the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV, in low-luminosity Large Hadron Collider fills corresponding to an integrated luminosity of 1.6 nb$^{-1}$. The distributions were constructed using charged particles with absolute pseudorapidity less than 2.5 and with transverse momentum greater than 500 MeV, in events with at least one such charged particle with transverse momentum above 1 GeV. These distributions characterise the angular distribution of energy and particle flows with respect to the charged particle with highest transverse momentum, as a function of both that momentum and of charged-particle multiplicity. The results have been corrected for detector effects and are compared to the predictions of various Monte Carlo event generators, experimentally establishing the level of underlying-event activity at LHC Run 2 energies and providing inputs for the development of event generator modelling. The current models in use for UE modelling typically describe this data to 5% accuracy, compared with data uncertainties of less than 1%.

1 data table match query

Mean values of charged-particle multiplicity $n_\mathrm{ch}$ as a function of leading charged-particle $p_\mathrm{T}$ in the tovards azimuthal region.


Version 2
A measurement of the soft-drop jet mass in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 121 (2018) 092001, 2018.
Inspire Record 1637587 DOI 10.17182/hepdata.79953

Jet substructure observables have significantly extended the search program for physics beyond the Standard Model at the Large Hadron Collider. The state-of-the-art tools have been motivated by theoretical calculations, but there has never been a direct comparison between data and calculations of jet substructure observables that are accurate beyond leading-logarithm approximation. Such observables are significant not only for probing the collinear regime of QCD that is largely unexplored at a hadron collider, but also for improving the understanding of jet substructure properties that are used in many studies at the Large Hadron Collider. This Letter documents a measurement of the first jet substructure quantity at a hadron collider to be calculated at next-to-next-to-leading-logarithm accuracy. The normalized, differential cross-section is measured as a function of log$_{10}\rho^2$, where $\rho$ is the ratio of the soft-drop mass to the ungroomed jet transverse momentum. This quantity is measured in dijet events from 32.9 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collisions recorded by the ATLAS detector. The data are unfolded to correct for detector effects and compared to precise QCD calculations and leading-logarithm particle-level Monte Carlo simulations.

1 data table match query

Data from Fig 3a. The unfolded $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$(lead) > 600 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data; the uncertainties from the calculations are shown on each one. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.


Version 2
Search for a new heavy gauge boson resonance decaying into a lepton and missing transverse momentum in 36 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} =$ 13 TeV with the ATLAS experiment

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 401, 2018.
Inspire Record 1605396 DOI 10.17182/hepdata.77273

The results of a search for new heavy $W^\prime$ bosons decaying to an electron or muon and a neutrino using proton-proton collision data at a centre-of-mass energy of $\sqrt{s} = 13$ TeV are presented. The dataset was collected in 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider and corresponds to an integrated luminosity of 36.1 fb$^{-1}$. As no excess of events above the Standard Model prediction is observed, the results are used to set upper limits on the $W^\prime$ boson cross-section times branching ratio to an electron or muon and a neutrino as a function of the $W^\prime$ mass. Assuming a $W^\prime$ boson with the same couplings as the Standard Model $W$ boson, $W^\prime$ masses below 5.1 TeV are excluded at the 95% confidence level.

3 data tables match query

Upper limits at the 95% CL on the cross section for SSM W' production and decay to the electron+neutrino channel as a function of the W' pole mass.

Upper limits at the 95% CL on the cross section for SSM W' production and decay to the muon+neutrino channel as a function of the W' pole mass.

Combined (electron and muon channels) upper limits at the 95% CL on the cross section for SSM W' production and decay to a single lepton generation as a function of the W' pole mass.


Measurement of multi-particle azimuthal correlations with the subevent cumulant method in $pp$ and $p$+Pb collisions with the ATLAS detector at the LHC

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.C 97 (2018) 024904, 2018.
Inspire Record 1615757 DOI 10.17182/hepdata.82287

A detailed study of multi-particle azimuthal correlations is presented using $pp$ data at $\sqrt{s}=5.02$ and 13 TeV, and $p$+Pb data at $\sqrt{s_{\rm{NN}}}=5.02$ TeV, recorded with the ATLAS detector at the LHC. The azimuthal correlations are probed using four-particle cumulants $c_{n}\{4\}$ and flow coefficients $v_n\{4\}=(-c_{n}\{4\})^{1/4}$ for $n=2$ and 3, with the goal of extracting long-range multi-particle azimuthal correlation signals and suppressing the short-range correlations. The values of $c_{n}\{4\}$ are obtained as a function of the average number of charged particles per event, $\left\langle N_{\rm{ch}} \right\rangle$, using the recently proposed two-subevent and three-subevent cumulant methods, and compared with results obtained with the standard cumulant method. The three-subevent method is found to be least sensitive to short-range correlations, which originate mostly from jets with a positive contribution to $c_{n}\{4\}$. The three-subevent method gives a negative $c_{2}\{4\}$, and therefore a well-defined $v_2\{4\}$, nearly independent of $\left\langle N_{\rm{ch}} \right\rangle$, which provides direct evidence that the long-range multi-particle azimuthal correlations persist to events with low multiplicity. Furthermore, $v_2\{4\}$ is found to be smaller than the $v_2\{2\}$ measured using the two-particle correlation method, as expected for long-range collective behavior. Finally, the measured values of $v_2\{4\}$ and $v_2\{2\}$ are used to estimate the number of sources relevant for the initial eccentricity in the collision geometry.

4 data tables match query

The c_2{4} values calculated for charged particles with 0.3 < pT < 3 GeV with the 3-subevent cumulant method from the 13 TeV pp data. The event averaging is performed for N_{ch}^{Sel} calculated for 0.3 < pT < 3 GeV.

The c_2{4} values calculated for charged particles with 0.3 < pT < 3 GeV with the 3-subevent cumulant method from the 13 TeV pp data. The event averaging is performed for N_{ch}^{Sel} calculated for pT > 0.2 GeV.

The c_2{4} values calculated for charged particles with 0.3 < pT < 3 GeV with the 3-subevent cumulant method from the 13 TeV pp data. The event averaging is performed for N_{ch}^{Sel} calculated for pT > 0.4 GeV.

More…

Search for long-lived particles produced in $pp$ collisions at $\sqrt{s}=13$ TeV that decay into displaced hadronic jets in the ATLAS muon spectrometer

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 99 (2019) 052005, 2019.
Inspire Record 1704138 DOI 10.17182/hepdata.85748

A search for the decay of neutral, weakly interacting, long-lived particles using data collected by the ATLAS detector at the LHC is presented. The analysis in this paper uses 36.1 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 13$ TeV recorded in 2015-2016. The search employs techniques for reconstructing vertices of long-lived particles decaying into jets in the muon spectrometer exploiting a two vertex strategy and a novel technique that requires only one vertex in association with additional activity in the detector that improves the sensitivity for longer lifetimes. The observed numbers of events are consistent with the expected background and limits for several benchmark signals are determined.

1 data table match query

Endcap Muon RoI Cluster trigger efficiencies (in %) for baryogenesis $\chi \rightarrow \tau\tau\nu$ benchmark samples ($m_{h}=125$ GeV). The trigger efficiency is defined as the fraction of LLPs selected by the Muon RoI Cluster trigger as a function of the LLP decay position. The trigger is efficient for hadronic decays of LLPs that occur anywhere from the outer regions of the HCal to the middle station of the MS. These efficiencies are obtained from the subset of events with only a single LLP decay in the muon spectrometer in order to ensure that the result of the trigger is due to a single burst of MS activity. The uncertainties shown are statistical only. The relative differences in efficiencies of the benchmark samples are a result of the different kinematics.