The differential cross-section for 5 GeV/ cπ + p and π − p elastic scattering have been measured in the c.m. angular region 27° < θ cm < 130° corresponding to 0.5 < | t | < 7.8 (GeV/ c ) 2 . Dips are observed in both reactions at − t = 2.8 and 4.8 (GeV/ c ) 2 where the cross-sections are approximately 0.1 μ b/(GeV/ c ) 2 .
No description provided.
The DIS diffractive cross section, $d\sigma^{diff}_{\gamma^* p \to XN}/dM_X$, has been measured in the mass range $M_X < 15$ GeV for $\gamma^*p$ c.m. energies $60 < W < 200$ GeV and photon virtualities $Q^2 = 7$ to 140 GeV$^2$. For fixed $Q^2$ and $M_X$, the diffractive cross section rises rapidly with $W$, $d\sigma^{diff}_{\gamma^*p \to XN}(M_X,W,Q^2)/dM_X \propto W^{a^{diff}}$ with $a^{diff} = 0.507 \pm 0.034 (stat)^{+0.155}_{-0.046}(syst)$ corresponding to a $t$-averaged pomeron trajectory of $\bar{\alphapom} = 1.127 \pm 0.009 (stat)^{+0.039}_{-0.012} (syst)$ which is larger than $\bar{\alphapom}$ observed in hadron-hadron scattering. The $W$ dependence of the diffractive cross section is found to be the same as that of the total cross section for scattering of virtual photons on protons. The data are consistent with the assumption that the diffractive structure function $F^{D(3)}_2$ factorizes according to $\xpom F^{D(3)}_2 (\xpom,\beta,Q^2) = (x_0/ \xpom)^n F^{D(2)}_2(\beta,Q^2)$. They are also consistent with QCD based models which incorporate factorization breaking. The rise of $\xpom F^{D(3)}_2$ with decreasing $\xpom$ and the weak dependence of $F^{D(2)}_2$ on $Q^2$ suggest a substantial contribution from partonic interactions.
Cross section for diffractive scattering.
Cross section for diffractive scattering.
Cross section for diffracitve scattering.
The elastic scattering of K ± mesons on protons has been studied at 5 GeV/c. A total of about 500 000 events have been measured in the c.m. angular range 17° < θ cm < 165° corresponding to 0.2 < − t < (GeV/ c ) 2 . We observed a K − p backward peak which we have parametrized as d σ /d u = (0.6 ± 0.2) exp [(3.3 ± 0.6) u ] μb /(GeV/c) 2 , while for the K + p backward peak we find d σ /d u = (17.5 ± 1) exp [(3.6 ± 0.2) u ] μb /(GeV/c) 2 . The K − p cross-section falls to about 0.03 μ b ( GeV /c) 2 around − t = 5 (GeV/ c ) 2 , while the K + p cross-section stays in the vicinity of 0.3 μ b ( GeV /c) 2 in the same t -region. The K + p and K − p differential cross-sections have cross-over points at − t = 0.2, 1.1 and about 3.5 (GeV/ c ) 2 .
No description provided.
Parity nonconservation in proton-proton scattering has been studied by measuring the angle-integrated longitudinal analyzing power A z . We found A z (13.6 MeV)=(−1.5±0.5)×10 −7 . The error includes uncertainties due to statistics and corrections, as well as upper limits on systematic effects. The experimental result is discussed with respect to recent theoretical calculations.
No description provided.
This paper reports studies of the reactions γp→ρ π π πp and γp→ρ ρ πp. In particular a peak is reported in the ρ ρ π mass spectrum with closely similar mass and width to those of the ω ρ π peak previously reported in the reaction γp→ω ρ πp. The ratio of production cross sections is found to be ρ ρ π/ω ρ π=0.96±0.19, in serious disagreement with the expectation from Vector Meson Dominance. A possible explanation is indicated.
No description provided.
Backward elastic scattering has been measured for π + p at 2.85 and 3.30 GeV/ c and for π − p at 3.30 GeV/ c . The π + p angular distributions show steep backward peaks, whereas the π − p distribution is flatter. At 2.85 GeV/ c the π + p differential cross section close to 180° is more than twice that at 3.30 GeV/ c , supporting the assignment J P = 11 2 + for Δ δ (2420) resonance. The π + p data at 2.85 GeV/ c indicate the onset of a dip at cos θ c.m. ≈ −0.97.
The data for cos(theta) = 1 is the extrapolation.
The data for cos(theta) = 1 and U = 0 are the extrapolations.
The data for cos(theta) = 1 and U = 0 are the extrapolations.
The elastic scattering of 3.55 GeV/ c π + and π − mesons by protons was measured at centre-of-mass angles between 165° and 177°. The angular distributions for 864 events show a steeply rising backward peak for π + p, while the shape is less clear for π − p.
No description provided.
No description provided.
Extrapolations.
Diffractive dissociation of virtual photons, gamma* p-->Xp, has been studied in ep interactions with the ZEUS detector at HERA using an integrated luminosity of approx. 10 pb^-1. The data cover photon virtualities 0.17 < Q^2< 0.70 GeV^2 and 3 < Q^2< 80 GeV^2 with 3
The double differential cross section d2sig/dmx/dt measured with the LPS method for the Q**2 range 0.17 to 0.70 GeV**2.
The double differential cross section d2sig/dmx/dt measured with the LPS method for the Q**2 range 3 to 9 GeV**2.
The double differential cross section d2sig/dmx/dt measured with the LPS method for the Q**2 range 9 to 80 GeV**2.
Measurements are presented of differential dijet cross sections in diffractive photoproduction (Q^2<0.01 GeV^2) and deep-inelastic scattering processes (DIS, 4<Q^2<80 GeV^2). The event topology is given by ep-> e X Y, in which the system X, containing at least two jets, is separated from a leading low-mass proton remnant system Y by a large rapidity gap. The dijet cross sections are compared with NLO QCD predictions based on diffractive parton densities previously obtained from a QCD analysis of inclusive diffractive DIS cross sections by H1. In DIS, the dijet data are well described, supporting the validity of QCD factorisation. The diffractive DIS dijet data are more sensitive to the diffractive gluon density at high fractional parton momentum than the measurements of inclusive diffractive DIS. In photoproduction, the predicted dijet cross section has to be multiplied by a factor of approximately 0.5 for both direct and resolved photon interactions to describe the measurements. The ratio of measured dijet cross section to NLO prediction in photoproduction is a factor 0.5+-0.1 smaller than the same ratio in DIS. This suppression is the first clear observation of QCD hard scattering factorisation breaking at HERA. The measurements are also compared to the two soft colour neutralisation models SCI and GAL. The SCI model describes diffractive dijet production in DIS but not in photoproduction. The GAL model fails in both kinematic regions.
Differential cross section for DIS events as a function of Z_Pomeron.
Differential cross section for DIS events as a function of LOG10(X_Pomeron).
Differential cross section for DIS events as a function of W.
Proton-proton elastic scattering has been measured over the angular range 7 to 16 mrad at centre-of-mass energies of 31, 45 and 53 GeV using the CERN Intersecting Storage Rings. The results indicate that the diffraction peak has continued to shrink with increasing energy, but not as fast as suggested by the results at lower energies.
No description provided.