Date

Measurement of the Real Part of the Proton Proton Forward Scattering Amplitude from 80-GeV to 286-GeV by Means of Silicon Position Sensitive Detectors

Bartenev, V. ; Carrigan, Richard A. ; Cool, R.L. ; et al.
Sov.J.Nucl.Phys. 23 (1976) 400, 1976.
Inspire Record 100255 DOI 10.17182/hepdata.19082

None

1 data table match query

THE ERRORS INCLUDE THE UNCERTAINTIES IN THE FIT PARAMETERS SLOPE AND SIG, WHILE THE PURELY STATISTICAL ERRORS ARE ALSO GIVEN.


Measurement of the Slope of the Diffraction Peak for Elastic pp Scattering from 8-GeV to 400-GeV.

Bartenev, V. ; Kuznetsov, A. ; Morozov, B. ; et al.
Phys.Rev.Lett. 31 (1973) 1088-1091, 1973.
Inspire Record 81722 DOI 10.17182/hepdata.21381

The slope b(s) of the forward diffraction peak of p−p elastic scattering has been measured in the momentum-transfer-squared range 0.005≲|t|≲0.09 (GeV/c)2 and at incident proton energies from 8 to 400 GeV. We find that b(s) increases with s, and in the interval 100≲s≲750 (GeV)2 it can be fitted by the form b(s)=b0+2α′lns with b0=8.23±0.27, α′=0.278±0.024 (GeV/c)−2.

1 data table match query

MOMENTUM BINS ARE APPROX 20 GEV WIDE CENTRED AT THE GIVEN PLAB EXCEPT FOR THE 9 AND 12 GEV POINTS WHICH HAVE WIDTHS OF APPROX 1 AND 4 GEV RESPECTIVELY.


Real Part of the Proton-Proton Forward Scattering Amplitude from 50-GeV to 400-GeV.

Bartenev, V. ; Carrigan, Richard A. ; Chiang, I-Hung ; et al.
Phys.Rev.Lett. 31 (1973) 1367-1370, 1973.
Inspire Record 81733 DOI 10.17182/hepdata.21379

From measurements of proton-proton elastic scattering at very small momentum transfers where the nuclear and Coulomb amplitudes interfere, we have deduced values of ρ, the ratio of the real to the imaginary forward nuclear amplitude, for energies from 50 to 400 GeV. We find that ρ increases from -0.157 ± 0.012 at 51.5 GeV to +0.039 ± 0.012 at 393 GeV, crossing zero at 280 ± 60 GeV.

1 data table match query

No description provided.


A New Determination of the Electroweak Mixing Angle From $\nu_\mu$ Electron Scattering

The CHARM-II collaboration Geiregat, D. ; Vilain, P. ; Wilquet, G. ; et al.
Phys.Lett.B 232 (1989) 539, 1989.
Inspire Record 283348 DOI 10.17182/hepdata.29754

We are reporting on a new determination of sin 2 ϑ w from the ratio of v μ e to v e scattering cross sections. A new detector designed for this purpose was exposed tothe Wide Band Neutrino Beamof the 450 GeV (CERN SPS. An analysis of data taken in 1987 and 1988 is presented based on 762 v μ e and 1017 v e events. From the ratio of σ( v μ e ) to σ( v μ e ) we determined sin 2 ϑ w =0.233±0.012 ( stat ) ± 0.008 ( syst ) without radiative correction. With radiative correction for m t = m H =100 GeV we find sin 2 ϑ w =0.232±0.012( stat )±0.008( syst ).

2 data tables match query

Data without electroweak radiative corrections.

Data corrected for electroweak radiative effects with TOP and HIGGS masses 100 GeV.


Measurement of polarization transfer kappa(0) and tensor analyzing power T(20) in the backward elastic d p scattering

Punjabi, V. ; Abegg, R. ; Belostotsky, S. ; et al.
Phys.Lett.B 350 (1995) 178-183, 1995.
Inspire Record 405206 DOI 10.17182/hepdata.28545

The polarization transfer κ 0 and the tensor analyzing power T 20 for the 1 H d p)d reaction have been measured up to an internal momentum of k = 0.58 GeV/c. Comparison of the same observables obtained in recent studies for 1 H d p)d reaction, as a function of k , show different behavior. However the data from these two reactions are almost identical when compared in T 20 versus κ 0 correlation plots. We discuss similarities and differences observed in the two reactions.

1 data table match query

The authors use the Infinite Momentum Frame variable K= M( proton) * sqrt(1/(4*a*(1-a)) - 1), where a = (E(proton)+P_long(proton))/(E(deut)+P(deut)).


Tensor analyzing power T(20) in backward elastic d p scattering and breakup at 0-degrees between 3.5-GeV/c and 6.5-GeV/c

Azhgirey, L.S. ; Chernykh, E.V. ; Kobushkin, A.P. ; et al.
Phys.Lett.B 391 (1997) 22-28, 1997.
Inspire Record 456818 DOI 10.17182/hepdata.28323

The tensor analyzing power T 20 for the p ( d , p d) and p ( d , p ) pn reactions θ cm p = 180° have been measured at incident deuteron momenta from 3.5 to 6.5 GeV/ c . For both reactions T 20 remains negative up to internal momentum k ⋍ 0.85 GeV/ c and show a rich structure beyond the region where T 20 is expected to be determined by the S - and D -states of the deuteron. The T 20 data for deuteron breakup without pion production, close to the backward elastic kinematics, were obtained simultaneously with the elastic data.

1 data table match query

K is the internal momentum of the nucleon.


Tensor analyzing powers in the reactions p(d,p)d and p(d,p)p n at zero angle for incident-deuteron momenta between 3.5-GeV/c and 6.5-GeV/c.

Azhgirei, L.S. ; Chernykh, E.V. ; Ladygin, V.P. ; et al.
Phys.Atom.Nucl. 61 (1998) 432-447, 1998.
Inspire Record 474393 DOI 10.17182/hepdata.17151

None

1 data table match query

No description provided.


Measurement of Analyzing Power for Proton-Carbon Elastic Scattering in the Coulomb-Nuclear Interference Region with a 22-GeV/c Polarized Proton Beam

Tojo, J. ; Alekseev, I. ; Bai, M. ; et al.
Phys.Rev.Lett. 89 (2002) 052302, 2002.
Inspire Record 589041 DOI 10.17182/hepdata.19396

The analyzing power for proton-carbon elastic scattering in the coulomb-nuclear interference region of momentum transfer, $9.0\times10^{-3}<-t<4.1\times10^{-2}$ (GeV/$c)^{2}$, was measured with a 21.7 GeV/$c$ polarized proton beam at the Alternating Gradient Synchrotron of Brookhaven National Laboratory. The ratio of hadronic spin-flip to non-flip amplitude, $r_5$, was obtained from the analyzing power to be $\text{Re} r_5=0.088\pm 0.058$ and $\text{Im} r_5=-0.161\pm 0.226$.

1 data table match query

The analyzing power as a function of the momentum transfer T. The two DSYS errors are (1) the systematic error in the raw asymmetry and (2) that in the polarization of the beam.


Production of Nucleon Resonances by Single Diffraction Dissociation at the CERN ISR

Webb, R. ; Trilling, G. ; Telegdi, V. ; et al.
Phys.Lett.B 55 (1975) 331-335, 1975.
Inspire Record 91189 DOI 10.17182/hepdata.27915

The single diffraction dissociation process pp → (p π + π − )p has been studied at the CERN ISR at √ s = 45 GeV and 0.1 < − t < 0.6 GeV 2 . The reaction is dominated by nucleon resonance production: pp → pN (1520) and pp → pN(1688) with cross-sections (0.25 ± 0.08) mb and (0.56 ± 0.19) mb respectively.

1 data table match query

DIFFERENTIAL CROSS SECTIONS FOR THREE RANGES OF <P PI+ PI-> MASS.


Measurement and QCD analysis of the diffractive deep-inelastic scattering cross-section at HERA

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 48 (2006) 715-748, 2006.
Inspire Record 718190 DOI 10.17182/hepdata.45892

A detailed analysis is presented of the diffractive deep-inelastic scattering process $ep\to eXY$, where $Y$ is a proton or a low mass proton excitation carrying a fraction $1 - \xpom > 0.95$ of the incident proton longitudinal momentum and the squared four-momentum transfer at the proton vertex satisfies $|t|<1 {\rm GeV^2}$. Using data taken by the H1 experiment, the cross section is measured for photon virtualities in the range $3.5 \leq Q^2 \leq 1600 \rm GeV^2$, triple differentially in $\xpom$, $Q^2$ and $\beta = x / \xpom$, where $x$ is the Bjorken scaling variable. At low $\xpom$, the data are consistent with a factorisable $\xpom$ dependence, which can be described by the exchange of an effective pomeron trajectory with intercept $\alphapom(0)= 1.118 \pm 0.008 {\rm (exp.)} ^{+0.029}_{-0.010} {\rm (model)}$. Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the $Q^2$ and $\beta$ dependences of the cross section. The resulting gluon distribution carries an integrated fraction of around 70% of the exchanged momentum in the $Q^2$ range studied. Total and differential cross sections are also measured for the diffractive charged current process $e^+ p \to \bar{\nu}_e XY$ and are found to be well described by predictions based on the diffractive parton distributions. The ratio of the diffractive to the inclusive neutral current $ep$ cross sections is studied. Over most of the kinematic range, this ratio shows no significant dependence on $Q^2$ at fixed $\xpom$ and $x$ or on $x$ at fixed $Q^2$ and $\beta$.

22 data tables match query

Reduced cross section from the Minimum Bias data sample taken in 1997.

Reduced cross section from the Minimum Bias data sample taken in 1997.

Reduced cross section from the complete ('all') data sample taken in 1997.

More…