Differential cross sections have been measured at Fermilab with a focusing spectrometer for π±p, K±p, and p±p elastic scattering at 50-, 70-, 100-, 140-, and 175-GeV/c incident momentum over the |t| range 0.03 to 0.8 GeV2. The results are smooth in t and are parametrized by quadratic exponential fits.
DATA PRESENTED AGAIN IN LATER PAPER.
We report the results of a study of the reaction p p → p + x at 32.1 GeV c , where the recoiling proton has a small laboratory momentum. The reaction is studied in the 4.5 m Mirabelle bubble chamber at Serpukhov. We compare the diffractive dissociation of the incident antiproton to other incident particles.
No description provided.
CALCULATED USING THE OPTICAL THEOREM AND THE TOTAL CROSS SECTION FOR AP P OF 46 +- 0.3 MB.
TOPOLOGICAL AND BEAM DIFFRACTION CROSS SECTIONS WITH PLAB(FINAL STATE PROTON) < 1.1 GEV/C.
A comparison is made of the low-mass three-meson systems (πππ), (Kππ), (π K K ) and ( K K K ) diffractively produced in the reaction meson + proton → three mesons + proton. Several striking similarities and a few important differences are observed: (i) the reactions are consistent with the assumption that the three mesons decay entirely into a 0 − meson and a 0 + , 1 − or 2 + resonance; (ii) the three-meson mass spectra have a peak ≈ 250 MeV above the effective threshold M eff of the dominant decay mode and then fall off approximately as (mass) −3 ;(iii) the average spin 〈 J 〉 = 0.55 + 1.1 Q eff , where Q eff = M - M eff ; (iv) the average orbital angular momentum 〈 l 〉 increases according to 〈 l 〉 = 0.75 Q eff ; (v) the three-meson states are produced dominantly in unnatural spin-parity states and no evidence for their being resonant is found; (vi) the only natural spin-parity states found are the well-established 2 + resonances A 2 and K ∗ (1420); they have similar properties to the non-resonant unnatural parity states except for a dip at t = 0 in the dσ/d t distributions; (vii) both the unnatural and natural spin-parity states are produced mostly by an exchange of natural parity; (viii) there is evidence for two types of production mechanism with different polarization properties, one approximately conserving helicity in the t -channel and the other in the s -channel.
No description provided.
Results are presented on the topological cross sections obtained for antiproton-proton interactions from an exposure of the Fermilab 30-inch bubble chamber to a 100 GeV/ c negative beam enriched in p 's. The p p inelastic cross section is found to be σ inel = 34.6 ± 0.4 mb, and the average inelastic charged particle multiplicity to be 〈 n 〉 = 6.74 ± 0.05.
ERRORS ARE STATISTICAL ONLY EXCEPT FOR 2-PRONG CROSS-SECTIONS.
EXPONENTIAL FIT TO ELASTIC T DISTRIBUTION TO CORRECT FOR AN APPARENT LOSS OF EVENTS AT SMALL -T.
MOMENTS OF 100 GEV/C AP P MULTIPLICITY DISTRIBUTION.
A partial-wave analysis has been performed of the diffractively produced low-mass ( K ̄ 0 π − π 0 ) system in the reaction K − p → ( K ̄ 0 π − π 0 ) p at 10 and 16 GeV/ c . Thus information complementary to that derived from the K − p → (K − π + π − )p) channel is obtained. The presence of the K ϱ decay mode, besides the dominant K ∗ (890)π mode, for the state J P = 1 + , is confirmed. It is also confirmed that for this 1 + state the assumption of factorization of the amplitude into “production” and “decay” does not hold: the two decay modes K ∗ π and K ϱ have different polarisation properties (helicity is approximately conserved in the t -channel for the first, in the s -channel for the second). The assumption that the ( K ̄ 0 π − π 0 ) system has isospin I = 1 2 has been tested and found to hold. From the cross sections for the various J P states, assuming I = 1 2 , the cross sections for the (K − π + π − ) system are predicted and compared with the experimental ones. In general, agreement is found.
No description provided.
No description provided.
By means of an isospin analysis of the reaction π ± p→ π (N π ) at 16 GeV/ c we have determined the decay angular distributions of the N π system with I= 1 2 produced by isospin zero exchange. Helicity conservation is not observed in the t -channel for the N π mass region below 1.6 GeV, where diffraction dissociation of the proton is supposed to dominate. There are indications for approximate t -channel helicity conservation for N ∗ (1690) production. In the helicity frame, the experimental data are not in agreement with s -channel helicity conservation over the whole N π mass range investigated. Thus the diffractive process N→N π differs both from the process N→N ππ (or π → πππ and K→K ππ ) which approximately conserves t -channel helicity and from the elastic scattering N→N which conserves helicity in the s -channel.
No description provided.
FIT TO ISOSPIN HALF NUCLEON RESONANCE PRODUCTION WITH ISOSPIN ZERO EXCHANGE.
Elastic Σ − p and π − p cross section have been measured at 17.2 GeV/ c in the t interval −0.12, −0.38 (GeV/ c ) 2 . The Σ − p slope is b = 8.12 ± 0.35 (GeV/ c ) −2 .
No description provided.
NORMALIZED TO PI- P ELASTIC FORWARD DIFFERENTIAL CROSS SECTION OF 31.2 +- 1.9 MB/GEV**2 (PLUS 6 PCT SYSTEMATIC ERROR) OF K. J. FOLEY ET AL., PRL 11, 425 (1963).
NUMERICAL VALUES SUPPLIED BY J. J. BLAISING AND ADDED TO RECORD ON 19 DEC 77.
Single and joint decay angular distributions in the reaction p p → Δ ++ Δ ++ at 9.13 GeV/ c are discussed in the framework of single and double statistical tensors. The t dependence of 12 double statistical tensors is presented. Cross sections for p p → p p π + π − and p p → Δ ++ Δ ++ are determined to be 2.60 ± 0.10 and 0.90 ± 0.10 mb respectively. The results obtained are compared with other experiments mainly at 5.7 and 12 GeV/ c .
No description provided.
No description provided.
FROM FITTING DECAY ANGULAR DISTRIBUTIONS OF BOTH ISOBARS ADDED.
Results are presented for the reactions (1) π+n→pπ+π−, (2) π+n→pπ+π−π0, at an incident pion beam momentum of 11.7 GeV/c. Both reactions show considerable resonance production. Reaction (1) is dominated by ρ0 and f0 production and there is evidence for the variation of the ρ00 width with momentum transfer. Decay angular distributions are presented for the dipion system observed in reaction (1). Reaction (2) shows the production of both dipion and tripion resonances and there is evidence for the associated production of\(\mathcal{N}\)-resonances with the dipion resonances.
No description provided.
DN/DT PLOTTED. ALL RESONANCES ARE DEFINED JUST BY MASS CUTS.
RHO0 MASS REGION OF DIPION SYSTEM. NUMERICAL VALUES TAKEN FROM TABLE 6.1 OF THE THESIS BY D. KEMP (DURHAM 1974).
None
FOUR PION RESONANCE CALLED RHO(1.71) BY AUTHORS. DECAY IS CONSISTENT WITH 100 PCT <RHO0 RHO-> MODE.