The yields and average transverse momenta of pions, kaons, and antiprotons produced at the Fermilab p¯p collider at s=300, 540, 1000, and 1800 GeV are presented and compared with data from the energies reached at the CERN collider. We also present data on the dependence of average transverse momentum 〈pt〉 and particle ratios as a function of charged particle density dNcdη; data for particle densities as high as six times the average value, corresponding to a Bjorken energy density 6 GeV/fm3, are reported. These data are relevant to the search for quark-gluon phase of QCD.
PT RANGE FROM 0 TO INFINITY.
PT RANGE FROM 0 TO INFINITY.
No description provided.
The ratio of neutral-current to charged-current interactions is measured to be 0.30±0.03 for isoscalar targets, in good agreement with the results of previous experiments. Two independent methods are employed for isolating neutral-current events, one based on hadronic interactions, and the other on the momentum transverse to the hadron shower. The ratio of neutral-current interactions on neutrons to those on protons is measured to be 1.08±0.19.
No description provided.
No description provided.
No description provided.
The Fermilab wide-band antineutrino beam incident on the hydrogen-filled 15-foot bubble chamber was used to study ν¯p neutral-current interactions. The u=x(1−y) distribution is presented for both the neutral- and the charged-current data sample. Fitting the neutral-current u distribution to the prediction of a simple quark-parton model measures the Weinberg angle. By using recent measurements of the neutral-to-charged-current cross-section ratio for νp interactions (Rp), we find the corresponding ratio for ν¯p interactions (R¯p) to be 0.36±0.06.
No description provided.
No description provided.
No description provided.
We present the results of a study of the inclusive reaction ν¯p→μ+X0 for antineutrino energies from 5 to 150 GeV. The data were obtained by exposing the Fermi National Accelerator Laboratory hydrogen-filled 15-foot bubble chamber to a wide-band antineutrino beam. This is the first high-energy antineutrino experiment in which a pure proton target was used. The experimental problems of selecting the required sample of charged-current antineutrino-induced events are discussed in detail. A Monte Carlo simulation of the experiment is used to provide correction factors to the measured distributions. A measurement of the x dependence of the inelasticity (y) distributions gives the proton structure functions F2ν¯p(x) and xF3ν¯p(x) up to an overall normalization constant. When expressed in terms of the quark-parton model, the quark distributions u(x) and d¯(x)+s¯(x) are determined. The results for u(x) are found to be in excellent agreement with models based on fits to electron and muon scattering data. Using these results to fix the u(x) normalization, an absolute measurement is made of x[d¯(x)+s¯(x)], the antiquark momentum distribution.
VALUES OF Q**2 ASSOCIATED WITH THE FOLLOWING TABLE ARE.... 2.2 , 3.5 , 3.4 , 4.4 , 4.7 , 5.0 , 6.0 , 6.5 , 7.7 , 8.0.
Using data from the Fermilab 15 ft hydrogen bubble chamber, we have studied inclusive ϱ 0 production in antineutrino-proton charged-current interactions. We measure (0.21 ± 0.03) ϱ 0 /event, corresponding to ϱ 0 / π − =0.12 ± 0.02. As a function of Q 2 and for hadronic masses above a threshold region, the ϱ 0 / π − ratio shows little variation. At least 50% of the ϱ 0 's are consistent with coming from the current fragmentation region. The results agree reasonably well with the predictions of the quark fragmentation model of Feynman and field.
AVERAGE BEAM ENERGY 31 GEV.
No description provided.
No description provided.
We present data on the reaction ν p → μ + pπ − from an exposure of the Fermilab 15 ft hydrogen bubble chamber. The channel cross section for 5 GeV < E ν < 70 GeV and M( p π − ) < 1.9 GeV is σ = (27 ± 5) × 10 −40 cm 2 . This cross section is dominated by the I = 1 2 production amplitude.
No description provided.
The total and annihilation cross sections of antineutrons on protons and carbon nuclei have been measured for antineutron momenta 0.25 to 0.88 GeV/c using a novel poor-geometry transmission technique. The measured cross sections are similar to antiproton cross sections in the same energy region. The presence of higher angular momenta (≥P wave) in the annihilation is confirmed down to 0.25 GeV/c. The Glauber-Wilkin correction to the p¯d total cross section is verified to 20% precision in this momentum region.
Axis error includes +- 0.0/0.0 contribution (QUOTED ERRORS INCLUDE BOTH STATISTICAL AND SYSTEMATIC EFFECTS).
This paper gives a detailed description of an experiment which studies the interactions of muon-type neutrinos in hydrogen and deuterium. The experiment was performed at the Zero Gradient Synchrotron using the wide-band neutrino beam incident on the Argonne 12-foot bubble chamber filled with hydrogen and deuterium. The neutrino energy spectrum peaks at 0.5 GeV and has a tail extending to 6 GeV. The shape and intensity of the flux is determined using measurements of pion yields from beryllium. The produced pions are focused by one or (for the latter part of the experiment) two magnetic horns. A total of 364000 pictures were taken with a hydrogen filling of the bubble chamber and 903 000 with a deuterium filling. The scanning and other analyses of the events are described. The most abundant reaction occurs off neutrons and is quasi-elastic scattering νd→μ−pps. The separation of these events from background channels is discussed. The total and differential cross sections are analyzed to obtain the axial-vector form factor of the nucleon. Our result, expressed in terms of a dipole form factor, gives an axial-vector mass of 0.95±0.09 GeV. A comparison is made to previous measurements using neutrino beams, and also to determinations based upon threshold pion electroproduction experiments. In addition, the data are used to measure the weak vector form factor and so check the conserved-vector-current hypothesis.
Measured Quasi-Elastic total cross section.
We have measured the differential cross sections and Λ polarizations in the reactions π−p→ΛK0 and π−p→ΛK*0 (890) near the backward direction, at 3, 4, 5, and 6 GeV/c. Data equal to several times the world's total sample above 2 GeV/c were recorded. Both reactions are characterized by cross sections falling rapidly with beam momentum, and by large positive Λ polarizations for u′ between 0.0 and 0.6 GeV2. Analysis of π−p→ΛK0 yields an effective Regge trajectory consistent with antishrinkage of the backward peak. Separation into amplitudes of definite-parity-naturality exchange shows the reaction to be dominated by unnatural-parity exchange. The energy behavior of this exchange is, however, not consistent with a single linear baryon Regge trajectory or exchange-degenerate pair of trajectories. An apparent normalization discrepancy between data on π−p→ΛK0 of a CERN-ETH group and other high-statistics data including that of this experiment is discussed.
No description provided.
No description provided.
No description provided.
Relative rates for deep inelastic neutrino and antineutrino scattering without a finalstate muon have been measured. For neutrinos the result is Rν=σ(νμ+nucleon→νμ+hadrons)σ(νμ+nucleon→μ−+hadrons)=0.11±0.05. The corresponding ratio for antineutrinos is Rν¯=0.32±0.09.
No description provided.