We report measurements of Xi and Xi-bar hyperon absolute yields as a function of rapidity in 158 GeV/c Pb+Pb collisions. At midrapidity, dN/dy = 2.29 +/- 0.12 for Xi, and 0.52 +/- 0.05 for Xi-bar, leading to the ratio of Xi-bar/Xi = 0.23 +/- 0.03. Inverse slope parameters fitted to the measured transverse mass spectra are of the order of 300 MeV near mid-rapidity. The estimated total yield of Xi particles in Pb+Pb central interactions amounts to 7.4 +/- 1.0 per collision. Comparison to Xi production in properly scaled p+p reactions at the same energy reveals a dramatic enhancement (about one order of magnitude) of Xi production in Pb+Pb central collisions over elementary hadron interactions.
Data are given at the midrapidity value.
Requested data from authors.
We have examined charged multiplicities arising from p − p and p− p ̄ collisions over the range of center of mass energies, s , from 30 GeV to 1800 GeV. Results from Tevatron experiment E735 support the presence of double parton interactions. These processes can be seen to account for a large fraction of the increase in the non single diffraction inelastic cross section from energies of about 200 GeV to 1800 GeV.
Multiplicity distribution at centre-of-mass energy 1800 GeV.
Multiplicity distributions at centre-of-mass energy 300, 546 and 1000 GeV.
Charged particles ($h^\pm$) and \kz mesons have been studied in photoproduced events containing at least one jet of $E_T > 8$ GeV in a pseudorapidity interval (--0.5, 0.5) in the ZEUS laboratory frame. Distributions are presented in terms of transverse momentum, pseudorapidity and distance of the particle from the axis of a jet. The properties of \hpm within the jet are described well using the standard settings of PYTHIA, but the use of the multiparton interaction option improves the description outside the jets. A reasonable overall description of the \kz behaviour is possible with PYTHIA using a reduced value of the strangeness suppression parameter. The numbers of $h^\pm$ and \kz within a jet as defined above are measured to be $3.25\pm0.02\pm0.28$ and $0.431\pm0.013\pm0.088$ respectively. Fragmentation functions are presented for $h^\pm$ and \kz in photoproduced jets; agreement is found with calculations of Binnewies et al. and, at higher momenta, with $p\bar p$ scattering and with standard PYTHIA. Fragmentation functions in direct photoproduced events are extracted, and at higher momenta give good agreement with data from related processes in $e^+e^-$ annihilation and deep inelastic $ep$ scattering.
Corrected multiplicities of charged particles and neutral K0 mesons per photoproduced jet.
Corrected distribution of charged particles per jet in events containing a hadron jet.
Corrected distribution of charged particles per jet in events containing a hadron jet.
This paper presents measurements of \k\ and \lam\ production in neutral current, deep inelastic scattering of 26.7 GeV electrons and 820 GeV protons in the kinematic range $ 10 < Q~{2} < 640 $ GeV$~2$, $0.0003 < x < 0.01$, and $y > 0.04$. Average multiplicities for \k\ and \lam\ production are determined for transverse momenta \ \ptr\ $> 0.5 $ GeV and pseudorapidities $\left| \eta \right| < 1.3$. The multiplicities favour a stronger strange to light quark suppression in the fragmentation chain than found in $e~+ e~-$ experiments. The production properties of \k's in events with and without a large rapidity gap with respect to the proton direction are compared. The ratio of neutral \k's to charged particles per event in the measured kinematic range is, within the present statistics, the same in both samples.
No description provided.
No description provided.
No description provided.
Charged particle production has been measured in Deep Inelastic Scattering (DIS) events using the ZEUS detector over a large range of $Q~2$ from 10 to $1280 {\rm\ GeV}~2$. The evolution with $Q$ of the charged multiplicity and scaled momentum has been investigated in the current fragmentation region of the Breit frame. The data are used to study QCD \linebreak coherence effects in DIS and are compared with corresponding \eedata in order to test the universality of quark fragmentation.
Mean charged multiplicity in the current fragmentation region.
Mean charged multiplicity in the current fragmentation region.
Mean charged multiplicity in the current fragmentation region.
Data on the multiplicity and inclusive spectra of γ produced in inelastic pNe20 and pN interactions at 300 GeV are presented. The γ multiplicity for pNe20 interactions is 11.43±0.23, and the ratio of 〈nγ〉 for pNe20 and pN interactions is 1.48±0.05. From an analysis of the effective-mass distributions, 〈nπ0〉=4.91±0.52 and 〈nη0〉=1.47±0.33. In fact, η0 production is much higher in pNe20 interactions [R(η0π0)=0.66±0.12 for np≥21] than in pN interactions [R(η0π0)=0.06±0.04]. No η′(958) signal is seen. Strong correlations between 〈nγ〉 and np, the number of secondary protons, are observed, primarily from the central and target fragmentation regions. Inclusive y* and p⊥ spectra are analyzed and evidence for low-energy cascading and rescattering of fast particles in the projectile fragmentation region is discussed. The data are compared to the predictions of the additive quark model, the Lund model, and the dual parton model.
No description provided.
GAMMA-MULTIPLICITY FOR (PROTON-NUCLEON)-INTERACTION WAS OBTAINED AT AVERAGING OVER (PP) AND (PN) EVENTS, AND THEN WAS USED IN THE PRESENTED RATIO.
No description provided.
Data on multiplicity, correlations, and inclusive spectra of KS0 mesons and Λ0(Λ¯0) hyperons produced with xF≤0 in inelastic pNe20 and pN interactions at 300 GeV are presented and compared. The inclusive cross sections for pNe20 (pN) with xF≤0 are 61.1±2.8 mb (3.34±0.64 mb) for KS0, 40.8±2.5 mb (1.89±0.29 mb) for Λ0, and 3.9±0.5 mb (0.31±0.08 mb) for Λ¯0. The multiplicity ratio for pNe20 and pN interactions is 1.58±0.16 for KS0, 1.95±0.23 for Λ0, and 1.12±0.43 for Λ¯0. We have observed the Σ0(1193) hyperon and measured the average multiplicity (nΣ0=0.049±0.027) for xF≤0. We have also observed the strange resonances K*(892), K*(1415), and Σ*(1385) with xF≤0 and measured the fraction of V0 coming from each resonance. Λ0 polarization for xF≤0 is measured and shows a decrease as p⊥ increases [pΛ(pNe20)≈−0.25 at p⊥=1.5 GeV/c], in agreement with other experiments which measure polarization in the region xF≫0. Since (43±7)% of the Λ0 are produced in Σ0→Λ0γ decays, the Λ0 polarization is significantly greater than the measured values. Experimental results are compared to predictions of the Lund model and the dual parton model of soft hadron-nucleus and hadron-nucleon interactions.
No description provided.
Axis error includes +- 0.0/0.0 contribution (NOT GIVEN).
No description provided.
Results are presented on an investigation of photons produced in multihadronic final states frome+e− annihilation at 35 GeV and 44 GeV center of mass energies. Scalling violation between 14 and 44 GeV is observed in inclusive photon spectra. Comparing inclusive π0 spectra with charged pion spectra it is found that the average π0 multiplicity exceeds the charged pion multiplicity scaled by factor of 0.5 by (16±5)% and (21±7)% at 35 and 44 GeV respectively. The excess can be attributed to isospin violating decays of hadrons. The η multiplicity is found to be 〈nη〈=0.64±0.09±0.06 at 35 GeV. With a significance of three standard deviations a signal from quark bremsstrahlung is observed. The measured charge asymmetry in hadronic final states, due to the interference between initial and final state radiation, ofA=−0.141±0.041 is in accord with QED expectations. An interference effect in the azimuth angle distribution of charged jets around the photon direction is observed for the first time.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
MOMENTUM SPECTRA IN THE WINDOW P=0.1-6.0 HAVE BEEN FITTED BY THE FORMULA: (1/N)*D(N)/D(P)=CONST(Q=1)*EXP(-SLOPE(Q=1)*P)+CONST(Q=2)*EXP (-SLOPE(Q=2)*P).
None
No description provided.
No description provided.
BACKGROUND DISTRIBUTION WAS OBTAINED BY USING PROTONS FROM DIFFERENT EVENTS.