We report results on rho(770)^0 -> pi+pi- production at midrapidity in p+p and peripheral Au+Au collisions at sqrt(s_NN) = 200 GeV. This is the first direct measurement of rho(770)^0 -> pi+pi- in heavy-ion collisions. The measured rho^0 peak in the invariant mass distribution is shifted by ~40 MeV/c^2 in minimum bias p+p interactions and ~70 MeV/c^2 in peripheral Au+Au collisions. The rho^0 mass shift is dependent on transverse momentum and multiplicity. The modification of the rho^0 meson mass, width, and shape due to phase space and dynamical effects are discussed.
The raw $\pi^{+} \pi^{-}$ invariant mass distributions after subtraction of the like-sign reference distribution for minimum bias p+p (top) and peripheral Au+Au (bottom) interactions.
The raw $\pi^{+} \pi^{-}$ invariant mass (solid line) and the like-sign reference distributions (open circles) for peripheral Au+Au collisions.
The $\rho^{0}$ mass as a function of $p_{T}$ for minimum bias $p$+$p$ (filled circles), high multiplicity $p$+$p$ (open triangles), and peripheral Au+Au (filled squares) collisions. The error bars indicate the systematic uncertainty. Statistical errors are negligible. The $\rho^{0}$ mass was obtained by fitting the data to the BW×PS functional form described in the text. The dashed lines represent the average of the $\rho^{0}$ mass measured in $e^{+} e^{−}$. The shaded areas indicate the ρ0 mass measured in $p$+$p$ collisions. The open triangles have been shifted downward on the abscissa by $50$ MeV/$c$ for clarity.
Pion-kaon correlation functions are constructed from central Au+Au data taken at $\sqrt{s_{NN}} = 130$ GeV. The results suggest that pions and kaons are not emitted at the same average space-time point. Space-momentum correlations, i.e. transverse flow, lead to a space-time emission asymmetry of pions and kaons that is consistent with the data. This result provides new independent evidence that the system created at RHIC undergoes a collective transverse expansion.
Pion-kaon correlation functions and ratios of correlation functions. Errors are statistical only.
Pion-kaon correlation functions and ratios of correlation functions. Errors are statistical only.
Pion-kaon correlation functions and ratios of correlation functions. Errors are statistical only.
The transverse mass spectra and mid-rapidity yields for $\Xi$s and $\Omega$s plus their anti-particles are presented. The 10% most central collision yields suggest that the amount of multi-strange particles produced per produced charged hadron increases from SPS to RHIC energies. A hydrodynamically inspired model fit to the spectra, which assumes a thermalized source, seems to indicate that these multi-strange particles experience a significant transverse flow effect, but are emitted when the system is hotter and the flow is smaller than values obtained from a combined fit to $\pi$, K, p and $\Lambda$s.
$m_T$ spectra of $\Xi^-$ and $\bar{\Xi}^+$ for 0-10% centrality. Errors listed here are the quadrature sum of statistical and point-to-point systematic uncertainties. There is an additional overall $m_T$-independent systematic uncertainty of 10%.
$m_T$ spectra of $\Xi^-$ and $\bar{\Xi}^+$ for 10-25% centrality. Errors listed here are the quadrature sum of statistical and point-to-point systematic uncertainties. There is an additional overall $m_T$-independent systematic uncertainty of 10%.
$m_T$ spectra of $\Xi^-$ and $\bar{\Xi}^+$ for 25-75% centrality. Errors listed here are the quadrature sum of statistical and point-to-point systematic uncertainties. There is an additional overall $m_T$-independent systematic uncertainty of 10%.
We report a new measurement of the π−p→3π0n total cross section from threshold to pπ=0.75GeV/c. The cross section near the N(1535)12− resonance is only a few μb after subtracting the large η→3π0 background associated with π−p→ηn. A simple analysis of our data results in the estimated branching fraction B[S11→πN(1440)12+]=(8±2)%. This is the first such estimate obtained with a three-pion production reaction.
Total cross section from threshold to 750 MeV. Only statistical errors are given in the table.
The production rates and substructure of jets have been studied in charged current deep inelastic e+p scattering for Q**2>200 GeV**2 with the ZEUS detector at HERA using an integrated luminosity of 110.5 pb**-1. Inclusive jet cross sections are presented for jets with transverse energies E_T(jet) > 14 GeV and pseudorapidities in the range -1 < eta(jet) < 2. Dijet cross sections are presented for events with a jet having E_T(jet) > 14 GeV and a second jet having E_T(jet) > 5 GeV. Measurements of the mean subjet multiplicity, <n_sbj>, of the inclusive jet sample are presented. Predictions based on parton-shower Monte Carlo models and next-to-leading-order QCD calculations a re compared to the measurements. The value of alphas(M_Z), determined from <n_sbj> at y_cut=0.01 for jets with 25<E_T(jet)<119 GeV, is alphas(M_Z) = 0.1202 +-0.0052 (stat.) +0.0060-0.0019 (syst.) +0.0065-0.0053 (th.). The mean subjet multiplicity as a function of Q**2 is found to be consistent with that measured in NC DIS.
Inclusive jet cross section DSIG/DQ**2 for jets in the lab. frame. Data from the 1995-1997 sample.
Inclusive jet cross section DSIG/DQ**2 for jets in the lab. frame. Data from the 1999-2000 sample.
Inclusive jet cross section DSIG/DQ**2 for jets in the lab. frame. Data from the combined sample.
We present STAR measurements of the azimuthal anisotropy parameter $v_2$ and the binary-collision scaled centrality ratio $R_{CP}$ for kaons and lambdas ($\Lambda+\bar{\Lambda}$) at mid-rapidity in Au+Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. In combination, the $v_2$ and $R_{CP}$ particle-type dependencies contradict expectations from partonic energy loss followed by standard fragmentation in vacuum. We establish $p_T \approx 5$ GeV/c as the value where the centrality dependent baryon enhancement ends. The $K_S^0$ and $\Lambda+\bar{\Lambda}$ $v_2$ values are consistent with expectations of constituent-quark-number scaling from models of hadron fromation by parton coalescence or recombination.
The minimum bias (0-80% of the collision cross-section) v2(pT) of K0s. Errors listed include statistical and point-to-point systematic uncertainties from the background. Additional non-flow systematic uncertainties are approximately -20%.
The minimum bias (0-80% of the collision cross-section) v2(pT) of Lambda+Lambdabar. Errors listed include statistical and point-to-point systematic uncertainties from the background. Additional non-flow systematic uncertainties are approximately -20%.
The minimum bias (0-80% of the collision cross-section) v2(pT) of charged hadrons. Errors listed include statistical and point-to-point systematic uncertainties from the background. Additional non-flow systematic uncertainties are approximately -20%.
We report measurements of single-particle inclusive spectra and two-particle azimuthal distributions of charged hadrons at high transverse momentum (high $p_T$) in minimum bias and central d+Au collisions at $\sqrt{s_{NN}}$=200 GeV. The inclusive yield is enhanced in d+Au collisions relative to binary-scaled p+p collisions, while the two-particle azimuthal distributions are very similar to those observed in p+p collisions. These results demonstrate that the strong suppression of the inclusive yield and back-to-back correlations at high $p_T$ previously observed in central Au+Au collisions are due to final-state interactions with the dense medium generated in such collisions.
Uncorrected charged particle multiplicity distributions measured in −3.8 < $\eta$ < −2.8 (Au-direction) for d+Au collisions. Points are for minimum bias (triangles) and peripheral (circles, ZDC-d single neutron) collisions. Both are normalized to the total number of d+Au collisions. Histograms are Glauber model calculations.
Inclusive $p_{T}$ distributions for minimum bias and central d+Au collisions, and non-singly diffractive p+p collisions. Hash marks at the top indicate bin boundaries for $p_{T}$ > 3.8 GeV/c.
$R_{AB}(p_{T})$ from Eq. 1 for minimum bias and central d+Au collisions, and central Au+Au collisions. The minimum bias d+Au data are displaced 100 MeV/c to the right for clarity. The error bars are the quadrature sum of the statistical and point-to-point systematic uncertainties. The bands show the normalization uncertainties, which are highly correlated point-to-point and between the two d+Au distributions.
We report on the rapidity and centrality dependence of proton and anti-proton transverse mass distributions from Au+Au collisions at sqrt(sNN) = 130GeV as measured by the STAR experiment at RHIC. Our results are from the rapidity and transverse momentum range of |y|<0.5 and 0.35 <p_t<1.00GeV/c. For both protons and anti-protons, transverse mass distributions become more convex from peripheral to central collisions demonstrating characteristics of collective expansion. The measured rapidity distributions and the mean transverse momenta versus rapidity are flat within |y|<0.5. Comparisons of our data with results from model calculations indicate that in order to obtain a consistent picture of the proton(anti-proton) yields and transverse mass distributions the possibility of pre-hadronic collective expansion may have to be taken into account.
$p$ differential yield. Systematic uncertainties are $\pm$10%.
$\bar{p}$ differential yield. Systematic uncertainties are $\pm$10%.
Rapidity distribution of $p$. Combined statitiscal uncertainty and systematic uncertainty from PID contramination. Systematic uncertainties from the track reconstruction efficiency are $\pm$25%.
The cross section for deeply virtual Compton scattering in the reaction ep -> e gamma p has been measured with the ZEUS detector at HERA using integrated luminosities of 95.0 pb-1 of e+p and 16.7 pb-1 of e-p collisions. Differential cross sections are presented as a function of the exchanged-photon virtuality, Q2, and the centre-of-mass energy, W, of the gamma*p system in the region 5 < Q2 < 100 GeV2 and 40 < W < 140 GeV. The measured cross sections rise steeply with increasing W. The measurements are compared to QCD-based calculations.
Measurements of the DVCS process cross section as a function of Q**2 at average W = 89 GeV. Data are given seperately for the E+ P and E- P interactions.
Measurements of the DVCS process cross section as a function of W at average Q**2 = 9.6 GeV**2. For the E+ P data sample.
Measurements of the DVCS process cross section as a function of W at average Q**2 = 9.6 GeV**2. For the E- P data sample.
The Fermilab E866/NuSea Collaboration has measured the Drell-Yan dimuon cross sections in 800 GeV/$c$ $pp$ and $pd$ collisions. This represents the first measurement of the Drell-Yan cross section in $pp$ collisions over a broad kinematic region and the most extensive study to date of the Drell-Yan cross section in $pd$ collisions. The results indicate that recent global parton distribution fits provide a good description of the light antiquark sea in the nucleon over the Bjorken-$x$ range $0.03 \lesssim x < 0.15$, but overestimate the valence quark distributions as $x \to 1$.
Measurment of the scaling form of the MU+ MU- cross section in the XL range-0.05 to 0.05 from the hydrogen target.
Measurment of the scaling form of the MU+ MU- cross section in the XL range0.05 to 0.10 from the hydrogen target.
Measurment of the scaling form of the MU+ MU- cross section in the XL range0.10 to 0.15 from the hydrogen target.