Deep inelastic scattering and its diffractive component, ep -> e'gamma*p ->e'XN, have been studied at HERA with the ZEUS detector using an integrated luminosity of 4.2 pb-1. The measurement covers a wide range in the gamma*p c.m. energy W (37 - 245 GeV), photon virtuality Q2 (2.2 - 80 GeV2) and mass Mx. The diffractive cross section for Mx > 2 GeV rises strongly with W: the rise is steeper with increasing Q2. The latter observation excludes the description of diffractive deep inelastic scattering in terms of the exchange of a single Pomeron. The ratio of diffractive to total cross section is constant as a function of W, in contradiction to the expectation of Regge phenomenology combined with a naive extension of the optical theorem to gamma*p scattering. Above Mx of 8 GeV, the ratio is flat with Q2, indicating a leading-twist behaviour of the diffractive cross section. The data are also presented in terms of the diffractive structure function, F2D(3)(beta,xpom,Q2), of the proton. For fixed beta, the Q2 dependence of xpom F2D(3) changes with xpom in violation of Regge factorisation. For fixed xpom, xpom F2D(3) rises as beta -> 0, the rise accelerating with increasing Q2. These positive scaling violations suggest substantial contributions of perturbative effects in the diffractive DIS cross section.
Cross section for the diffractive scattering process GAMMA* P --> DD X for a diffractive mass of 1.2 GeV and Q**2 = 2.7 GeV**2.
Cross section for the diffractive scattering process GAMMA* P --> DD X for a diffractive mass of 1.2 GeV and Q**2 = 4.0 GeV**2.
Cross section for the diffractive scattering process GAMMA* P --> DD X for a diffractive mass of 1.2 GeV and Q**2 = 6.0 GeV**2.
Diffractive photoproduction of D*+/-(2010) mesons was measured with the ZEUS detector at the ep collider HERA, using an integrated luminosity of 78.6 pb^{-1}. The D* mesons were reconstructed in the kinematic range: transverse momentum p_T(D*) > 1.9 GeV and pseudorapidity |eta(D*)| < 1.6, using the decay D*+ -> D0 pi+_s followed by D0 -> K- pi+ (+c.c.). Diffractive events were identified by a large gap in pseudorapidity between the produced hadronic state and the outgoing proton. Cross sections are reported for photon-proton centre-of-mass energies in the range 130 < W < 300 GeV and for photon virtualities Q^2 < 1 GeV^2, in two ranges of the Pomeron fractional momentum x_pom < 0.035 and x_pom < 0.01. The relative contribution of diffractive events to the inclusive D*+/-(2010) photoproduction cross section is about 6%. The data are in agreement with perturbative QCD calculations based on various parameterisations of diffractive parton distribution functions. The results are consistent with diffractive QCD factorisation.
Total cross section integrated over the given kinematic range.
Ratio of diffractive to inclusive D* cross section.
Differential cross sections for diffractive photoproduction of D*+- mesons as a function of X(NAME=POMERON).
We have measured the reactions π±p→π±p and π+p→K+Σ+ at 5.0 GeV/c in the region 2.2<−t<3.5 (GeV/c)2. We find the minimum cross section of the dip at −t=2.8 (GeV/c)2 in π+p elastic scattering to be 0.16 ± 0.05 μb/GeV2. The π−p differential cross section exhibits similar structure, while the π+p→K+Σ+ channel shows a steady decline in cross section as |t| increases. The polarization of the Σ+ remains large and positive to at least −t=2.8 (GeV/c)2.
No description provided.
No description provided.
Deep inelastic scattering and its diffractive component, $ep \to e^{\prime}\gamma^* p \to e^{\prime}XN$, have been studied at HERA with the ZEUS detector using an integrated luminosity of 52.4 pb$^{-1}$. The $M_X$ method has been used to extract the diffractive contribution. A wide range in the centre-of-mass energy $W$ (37 -- 245 GeV), photon virtuality $Q^2$ (20 -- 450 GeV$^2$) and mass $M_X$ (0.28 -- 35 GeV) is covered. The diffractive cross section for $2 < M_X < 15$ GeV rises strongly with $W$, the rise becoming steeper as $Q^2$ increases. The data are also presented in terms of the diffractive structure function, $F^{\rm D(3)}_2$, of the proton. For fixed $Q^2$ and fixed $M_X$, $\xpom F^{\rm D(3)}_2$ shows a strong rise as $\xpom \to 0$, where $\xpom$ is the fraction of the proton momentum carried by the Pomeron. For Bjorken-$x < 1 \cdot 10^{-3}$, $\xpom F^{\rm D(3)}_2$ shows positive $\log Q^2$ scaling violations, while for $x \ge 5 \cdot 10^{-3}$ negative scaling violations are observed. The diffractive structure function is compatible with being leading twist. The data show that Regge factorisation is broken.
Cross section for diffractive scattering GAMMA* P --> DD X where M(DD) < 2.3 GeV and M(X) = 1.2 GeV for Q**2 = 25 GeV**2.
Cross section for diffractive scattering GAMMA* P --> DD X where M(DD) < 2.3 GeV and M(X) = 1.2 GeV for Q**2 = 35 GeV**2.
Cross section for diffractive scattering GAMMA* P --> DD X where M(DD) < 2.3 GeV and M(X) = 1.2 GeV for Q**2 = 45 GeV**2.
We present data on the reaction K+p→K+p at large angles. Between the forward diffraction peak and the backward peak the cross section is independent of four-momentum transfer but varies with incident momentum.
No description provided.
No description provided.
We report a high precision measurement of the transverse single spin asymmetry $A_N$ at the center of mass energy $\sqrt{s}=200$ GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The $A_N$ was measured in the four-momentum transfer squared $t$ range $0.003 \leqslant |t| \leqslant 0.035$ $\GeVcSq$, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of $A_N$ and its $t$-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this $\sqrt{s}$, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.
The asymmetry $\varepsilon(\varphi)/(P_B + P_Y)$ for various $t$-intervals.
The measured single spin asymmetry $A_N$ for five $-t$ intervals.
Fitted value of $r_5$.
The reactions π−p→π−p and π−p→π−π0p for 1.7 GeV/c incident π− have been studied, in 3094 and 2244 interactions respectively, identified from 10 106 two-prong events measured in film exposed at the BNL 20 in. hydrogen bubble chamber. The differential elastic-scattering cross-section is found to show a first and second diffraction peak and a first diffraction minimum with indications of a second minimum and onset of a third maximum. The experimental curve has been fitted by a black-dise optical-model formula with radius (0.80±0.03) fm and by a differential cross-section computed from the Dirac equation depending on two ranges, 0.7 fm attractive imaginary and 0.4 fm repulsive. The dominant mode (∼40%) of the π−π0p production is through the two-body channel, π−p→ϱ−p. We find the following cross-sections: σ(π−p→π−p mb, σ(π−p→π−p mb. The differential rhomeson production cross-section shows a diffraction peak having a dependence (dσ/dt)(π−p→ϱ−p)=[(2.5±0.2) exp [(−5.3±0.5)t]] mb/(GeV/c)2, wheret is the squared four0momentum transfer between incoming and outgoing proton in (GeV/c)2, and a second diffraction maximum. It has been fitted by an optical-model formula for a bright ring of radius 0.80 fm and ring thickness 0.25 fm. The cross-section for σ(π−p→π−p was found to be (0.36±0.04) mb. From the inelastic data the Chew-Low dipion scattering cross-section has been computed, using various form factors. A form factor of unity is found to be acceptable.
No description provided.
The p¯p total inelastic cross section has been measured in a hydrogen bubble chamber for p¯ momenta from 100 to 550 MeV/c. Below 200 MeV/c the cross section increases rapidly to several barns. From this behavior it is inferred that high partial waves, perhaps to L=3, are important in the annihilation at the lowest momenta studied. An abrupt change in the momentum dependence of the total absorption cross section occurs at about 350 MeV/c in the vicinity of previously observed structure in backward elastic scattering.
No description provided.
We present differential cross-section data for the reaction π+p→π+p near 180° in the center-of-mass system at beam momenta between 3.25 GeVc and 10 GeVc.
No description provided.
No description provided.
The differential cross section for π±, K±, and p± on hydrogen have been measured in the range 0.07<−t<1.6 (GeV/c)2. The dependence on momentum, momentum, transfer, and particle type are discussed.
No description provided.