The anisotropy parameter v_2, the second harmonic of the azimuthal particles distribution, has been measured with the PHENIX detector in Au+Au collisions at sqrt(s_NN) = 200 GeV for identified and inclusive charged particles at central rapidities (|eta| < 0.35) with respect to the reaction plane defined at high rapidities (|eta| = 3-4). The v_2 for all particles reaches a maximum at mid-centrality, and increases with p_T up to 2 GeV/c and then saturates or decreases slightly. Our results depart from hydrodynamically predicted behavior above 2 GeV/c. A quark coalescence model is also investigated.
Correlation of reaction planes between two beam counters for the second moment is shown as a function of centrality.
The value of $v_2$ for charged particles is shown as a function of centrality (middle) and as a function of $p_T$ (right).
The value of $v_2$ for charged particles is shown as a function of transverse momentum, $p_T$.
The production rates and substructure of jets have been studied in charged current deep inelastic e+p scattering for Q**2>200 GeV**2 with the ZEUS detector at HERA using an integrated luminosity of 110.5 pb**-1. Inclusive jet cross sections are presented for jets with transverse energies E_T(jet) > 14 GeV and pseudorapidities in the range -1 < eta(jet) < 2. Dijet cross sections are presented for events with a jet having E_T(jet) > 14 GeV and a second jet having E_T(jet) > 5 GeV. Measurements of the mean subjet multiplicity,
Inclusive jet cross section DSIG/DQ**2 for jets in the lab. frame. Data from the 1995-1997 sample.
Inclusive jet cross section DSIG/DQ**2 for jets in the lab. frame. Data from the 1999-2000 sample.
Inclusive jet cross section DSIG/DQ**2 for jets in the lab. frame. Data from the combined sample.
Transverse momentum spectra of charged hadrons with p_T < 8 GeV/c and neutral pions with p_T < 10 GeV/c have been measured at mid-rapidity by the PHENIX experiment at RHIC in d+Au collisions at sqrt(s_NN) = 200 GeV. The measured yields are compared to those in p+p collisions at the same sqrt(s_NN) scaled up by the number of underlying nucleon-nucleon collisions in d+Au. The yield ratio does not show the suppression observed in central Au+Au collisions at RHIC. Instead, there is a small enhancement in the yield of high momentum particles.
Midrapidity $p_T$ spectra for charged hadrons.
Midrapidity $p_T$ spectra for $\pi^0$.
Nuclear modification factor $R_{dA}$ for $\pi^0$ in the PbGl and PbSc calorimeters in minimum bias $d$+$Au$.
Cross sections for e^+p charged current deep inelastic scattering at a centre-of-mass energy of 318 GeV have been determined with an integrated luminosity of 60.9pb^-1 collected with the ZEUS detector at HERA. The differential cross sections dsigma/dQ^2, dsigma/dx and dsigma/dy for Q^2>200 GeV^2 are presented. In addition, d^2sigma/dxdQ^2 has been measured in the kinematic range 280 GeV^2 < Q^2 < 17000 GeV^2 and 0.008 < x < 0.42. The predictions of the Standard Model agree well with the measured cross sections. The mass of the W boson propagator is determined to be M_W=78.9 +/- 2.0 (stat.) +/- 1.8 (syst.) +2.0 -1.8 (PDF) GeV from a fit to dsigma/dQ^2. The chiral structure of the Standard Model is also investigated in terms of the (1-y)^2 dependence of the the double-differential cross section. The structure-function F_2^CC has been extracted by combining the measurements presented here with previous ZEUS results from e^-p scattering, extending the measurement obtained in a neutrino-nucleus scattering experiment to a significantly higher Q^2 region.
The total cross section for Q**2 > 200 GeV**2.
The differential cross section as a function of Q**2.
The differential cross section as a function of X.
Production of D*+/-(2010) mesons in diffractive deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 82 pb^{-1}. Diffractive events were identified by the presence of a large rapidity gap in the final state. Differential cross sections have been measured in the kinematic region 1.5 < Q^2 < 200 GeV^2, 0.02 < y < 0.7, x_{IP} < 0.035, beta < 0.8, p_T(D*+/-) > 1.5 GeV and |\eta(D*+/-)| < 1.5. The measured cross sections are compared to theoretical predictions. The results are presented in terms of the open-charm contribution to the diffractive proton structure function. The data demonstrate a strong sensitivity to the diffractive parton densities.
Total cross section for diffractive D*+- production in the stated kinematicregion.. The second DSYS uncertainty arises from the subtraction of the proton-dissociative background.
The differential cross section as a function of X(NAME=POMERON).
The differential cross section as a function of transverse momentum.
A study of Z-boson pair production in e+e- annihilation at center-of-mass energies between 190 GeV and 209 GeV is reported. Final states containing only leptons, (l+l-l+l- and l+l-nn), quark and lepton pairs, (qql+l-, qqnn) and only hadrons (qqqq) are considered. In all states with at least one Z boson decaying hadronically, lifetime, lepton and event-shape tags are used to separate bb pairs from qq final state. Limits on anomalous ZZgamma and ZZZ couplings are derived from the measured cross sections and from event kinematics using an optimal observable method. Limits on low scale gravity with large dimensions are derived from the cross sections and their dependence on polar angle.
The NC2 Z0-pair cross sections obtained from fits to the data.
J/psi production has been measured in proton-proton collisions at sqrt(s)= 200 GeV over a wide rapidity and transverse momentum range by the PHENIX experiment at RHIC. Distributions of the rapidity and transverse momentum, along with measurements of the mean transverse momentum and total production cross section are presented and compared to available theoretical calculations. The total J/psi cross section is 3.99 +/- 0.61(stat) +/- 0.58(sys) +/- 0.40(abs) micro barns. The mean transverse momentum is 1.80 +/- 0.23(stat) +/- 0.16(sys) GeV/c.
Measured J/PSI distribution in PT for the e+e- channel. The value of B, the branching fraction to either electrons or muons is the average value from PDG : 5.9%.The rapidity range is -0.35<y<0.35. Incertainties are 1-sigma statistical errors on the (signal - background) net yield. There is a 10% overall absolute cross section normalization error in addition to the error given.
Measured J/PSI distribution in PT for the mu+mu- channel. The value of B, the branching fraction to either electrons or muons, is the average value from PDG: 5.9%.The rapidity range is -2.2<y<-1.2. Incertainties are 1-sigma statistical errors on the (signal - background) net yield.There is a 10% overall absolute cross section normalization error in addition to the error given.
J/PSI distribution in rapidity. The data at rapidity = 0 is from the electron arm, the data from the muon arm, corresponding to forward rapidity is divided in two bins.The value of B,the branching fraction to either electrons or muons, is 5.9%, the average value from PDG.Incertainties are 1-sigma statistical errors on the (signal - background) net yield.There is a 10% overall absolute cross section normalization error in addition to the error given.
The centrality dependence of transverse momentum distributions and yields for pi^+/-, K^+/-, p and p^bar in Au+Au collisions at sqrt(s_NN) = 200 GeV at mid-rapidity are measured by the PHENIX experiment at RHIC. We observe a clear particle mass dependence of the shapes of transverse momentum spectra in central collisions below ~ 2 GeV/c in p_T. Both mean transverse momenta and particle yields per participant pair increase from peripheral to mid-central and saturate at the most central collisions for all particle species. We also measure particle ratios of pi^-/pi^+, K^-/K^+, p^bar/p, K/pi, p/pi and p^bar/pi as a function of p_T and collision centrality. The ratios of equal mass particle yields are independent of p_T and centrality within the experimental uncertainties. In central collisions at intermediate transverse momenta ~ 1.5-4.5 GeV/c, proton and anti-proton yields constitute a significant fraction of the charged hadron production and show a scaling behavior different from that of pions.
Centrality dependence of the $p_{T}$ distribution for $\pi^{+}$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Errors are statistical only.
Centrality dependence of the $p_{T}$ distribution for $\pi^{-}$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Errors are statistical only.
Centrality dependence of the $p_{T}$ distribution for $K^{+}$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Errors are statistical only.
Transverse momentum spectra and yields of hadrons are measured by the PHENIX collaboration in Au + Au collisions at sqrt(s_NN) = 130 GeV at the Relativistic Heavy Ion Collider (RHIC). The time-of-flight resolution allows identification of pions to transverse momenta of 2 GeV/c and protons and antiprotons to 4 GeV/c. The yield of pions rises approximately linearly with the number of nucleons participating in the collision, while the number of kaons, protons, and antiprotons increases more rapidly. The shape of the momentum distribution changes between peripheral and central collisions. Simultaneous analysis of all the p_T spectra indicates radial collective expansion, consistent with predictions of hydrodynamic models. Hydrodynamic analysis of the spectra shows that the expansion velocity increases with collision centrality and collision energy. This expansion boosts the particle momenta, causing the yield from soft processes to exceed that for hard to large transverse momentum, perhaps as large as 3 GeV/c.
The sources of systematic uncertainties in $\langle p_T \rangle$ and $dN$/$dy$.
The $dN$/$dy$ at midrapidity for hadrons produced at midrapidity in each centrality class.
The resulting inverse slopes in MeV after fitting an $m_T$ exponential to the spectra in the range $m_T$-$m_0$ < 1 GeV in each event centrality classes. The pion resonance region is excluded in the fits. The equivalent $p_T$ fit range for each particle is shown accordingly.
Cross-section and angular distributions for hadronic and lepton-pair final states in e+e- collisions at centre-of-mass energies between 189 GeV and 209 GeV, measured with the OPAL detector at LEP, are presented and compared with the predictions of the Standard Model. The measurements are used to determine the electromagnetic coupling constant alphaem at LEP2 energies. In addition, the results are used together with OPAL measurements at 91-183 GeV within the S-matrix formalism to determine the gamma-Z interference term and to make an almost model-independent measurement of the Z mass. Limits on extensions to the Standard Model described by effective four-fermion contact interactions or the addition of a heavy Z boson are also presented.
CM energy values.
Measured cross section for QUARK QUARKBAR (HADRON) production. The data are corrected to no interference between initial and final state radiation.
Measured cross section for MU+ MU- production. The data are corrected to no interference between initial and final state radiation.