The ratio R = σ (e + + p)/ σ (e − + p) of the elastic scattering cross-section detecting the recoil proton at 0 o in coincidence with the backward electron or positron was found to be R = 1.036 ± 0.018 at q 2 = 8 fm −2 , R = 1.079 ± 0.046 at q 2 = 32 fm −2 .
Axis error includes +- 0.0/0.0 contribution (?////Errors presented are the total combined statistical and systematic error s. Radiative corrections applied).
Axis error includes +- 0.0/0.0 contribution (?////Errors presented are the total combined statistical and systematic error s. Radiative corrections applied).
Polarization transfer in the 4He(e,e'p)3H reaction at a Q^2 of 0.4 (GeV/c)^2 was measured at the Mainz Microtron MAMI. The ratio of the transverse to the longitudinal polarization components of the ejected protons was compared with the same ratio for elastic ep scattering. The results are consistent with a recent fully relativistic calculation which includes a predicted medium modification of the proton form factor based on a quark-meson coupling model.
No description provided.
No description provided.
We report the first measurement of the vector analyzing power in inclusive transversely polarized elastic electron-proton scattering at Q^2 = 0.1 (GeV/c)^2 and large scattering angles. This quantity should vanish in the single virtual photon exchange, plane wave impulse approximation for this reaction, and can therefore provide information on double photon exchange amplitudes for electromagnetic interactions with hadronic systems. We find a non-zero value of A=-15.4+/-5.4 ppm. No calculations of this observable for nuclei other than spin 0 have been carried out in these kinematics, and the calculation using the spin orbit interaction from a charged point nucleus of spin 0 cannot describe these data.
Polarized beam.
We report a new measurement of the parity-violating asymmetry in elastic electron scattering from the proton at backward scattering angles. This asymmetry is sensitive to the strange magnetic form factor of the proton as well as electroweak axial radiative corrections. The new measurement of A=-4.92 +- 0.61 +- 0.73 ppm provides a significant constraint on these quantities. The implications for the strange magnetic form factor are discussed in the context of theoretical estimates for the axial corrections.
Polarized beam. FORMFACTOR(NAME=GM_S) is the strange quark contribution. FORMFACTOR(NAME=GM_S) is in nucleon magnetic FF.
We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from the proton. The kinematic point (theta_lab = 12.3 degrees and Q^2=0.48 (GeV/c)^2) is chosen to provide sensitivity, at a level that is of theoretical interest, to the strange electric form factor G_E^s. The result, A=-14.5 +- 2.2 ppm, is consistent with the electroweak Standard Model and no additional contributions from strange quarks. In particular, the measurement implies G_E^s + 0.39G_M^s = 0.023 +- 0.034 (stat) +- 0.022 (syst) +- 0.026 (delta G_E^n), where the last uncertainty arises from the estimated uncertainty in the neutron electric form factor.
Longitudinally polarized beam. C=L and C=R means left- and right polarization. The second systematic uncertainty arises from the estimated uncertainty inthe neutron electromagnetic from factor.
We report the first measurement of the parity-violating asymmetry in elastic electron scattering from the proton. The asymmetry depends on the neutral weak magnetic form factor of the proton which contains new information on the contribution of strange quark-antiquark pairs to the magnetic moment of the proton. We obtain the value $G_M~Z= 0.34 \pm 0.09 \pm 0.04 \pm 0.05$ n.m. at $Q~2=0.1$ (GeV/c)${}~2$.
Polarized beam. FORMFACTOR(NAME=GZM) = (1/4)*(GM_P-GM_N) - SIN2TW*GM_P - (1/4)*GM_S, whereFORMFACTOR(NAME=GM_S) is the strange quark contribution. FORMFACTOR(NAME=GZM) and FORMFACTOR(NAME=GM_S) are in nucleon magnetic FF.
The measurement of the polarisation transfer to the proton in the reactions\(H(\vec e,e'\vec p)\) and\(D(\vec e,e'\vec p)\) performed with longitudinally polarised electrons in quasi-free kinematics is presented. The coincidence measurement was executed atQ2≈8fm−2 using the 855 MeV, c.w. beam of the Mainz Microtron MAMI. The recoil polarisation was determined by means of a carbon analyser. The experiment shows that the binding of the nucleon does not modify the polarisationPx of the recoil proton within an error ofΔPx/Px≈10%. The measured polarisation agrees with recent theoretical predictions. Implications for the measurement of the electric form factor of the neutron using the\(D(\vec e,e'\vec n)\) reaction are discussed.
No description provided.
The proton elastic form factors GEp(Q2) and GMp(Q2) have been extracted for Q2=1.75 to 8.83 (GeV/c)2 via a Rosenbluth separation to ep elastic cross section measurements in the angular range 13°≤θ≤90°. The Q2 range covered more than doubles that of the existing data. For Q2<4 (GeV/c)2, where the data overlap with previous measurements, the total uncertainties have been reduced to < 14% in GEp and < 1.5% in GMp. Results for GEp(Q2) are consistent with the dipole fit GD(Q2)=(1+Q2/0.71)−2, while those for GMp(Q2)/μpGD(Q2) decrease smoothly from 1.05 to 0.92. Deviations from form factor scaling are observed up to 20%. The ratio Q2F2/F1 is observed to approach a constant value for Q2>3 (GeV/c)2. Comparisons are made to vector meson dominance, dimensional scaling, QCD sum rule, diquark, and constituent quark models, none of which fully characterize all the new data.
Axis error includes +- 1.6/1.6 contribution (Point-to-point systematic error. The quadrature sum of the point-to-point uncertainties in all quantities which defined the cross section).
Axis error includes +- 1.6/1.6 contribution (Point-to-point systematic error. The quadrature sum of the point-to-point uncertainties in all quantities which defined the cross section).
Axis error includes +- 1.6/1.6 contribution (Point-to-point systematic error. The quadrature sum of the point-to-point uncertainties in all quantities which defined the cross section).
Measurements of the deuteron elastic magnetic structure function B(Q2) are reported at squared four-momentum transfer values 1.20≤Q2≤2.77 (GeV/c)2. Also reported are values for the proton magnetic form factor GMp(Q2) at 11 Q2 values between 0.49 and 1.75 (GeV/c)2. The data were obtained using an electron beam of 0.5 to 1.3 GeV. Electrons backscattered near 180° were detected in coincidence with deuterons or protons recoiling near 0° in a large solid-angle double-arm spectrometer system. The data for B(Q2) are found to decrease rapidly from Q2=1.2 to 2 (GeV/c)2, and then rise to a secondary maximum around Q2=2.5 (GeV/c)2. Reasonable agreement is found with several different models, including those in the relativistic impulse approximation, nonrelativistic calculations that include meson-exchange currents, isobar configurations, and six-quark configurations, and one calculation based on the Skyrme model. All calculations are very sensitive to the choice of deuteron wave function and nucleon form factor parametrization. The data for GMp(Q2) are in good agreement with the empirical dipole fit.
The measured cross section have been devided by those obtained using the dipole form for the proton form factors: G_E=1/(1+Q2/0.71)**2, G_E(Q2)=G_M(Q2)/mu,where Q2 in GeV2, mu=2.79.
Axis error includes +- 0.0/0.0 contribution (?////Errors given are the statistical errors and systematic uncertainties add ed in quadreture).
At a square of the momentum transfer of 1.0 (GeV/c)2 the elastic scattering of electrons on deuterons has been measured at electron scattering angles of 8°, 60°, and 82°. From these data we have extracted a value of B(q2)=(0.59±1.20)×10−5 for the deuteron. This measurements extends the range in momentum transfer by almost a factor of 2 over the previous measurements.
No description provided.
No description provided.