Electromagnetic Form Factors of the Proton

Bumiller, F. ; Croissiaux, M. ; Dally, E. ; et al.
Phys.Rev. 124 (1961) 1623-1631, 1961.
Inspire Record 47220 DOI 10.17182/hepdata.26853

This paper reports experimental findings on the Dirac (F1) and Pauli (F2) form factors of the proton. The form factors have been obtained by using the Rosenbluth formula and the method of intersecting ellipses in analyzing the elastic electron-proton scattering cross sections. A range of energies covering the interval 200-1000 Mev for the incident electrons is explored. Scattering angles vary from 35° to 145°. Values as high as q2≅31 f−2 (q=energy−momentumtransfer) are investigated, but form factors can be reliably determined only up to about q2=25 f−2. Splitting of the form factors is confirmed. The newly measured data are in good agreement with earlier Stanford data on the form factors and also with the predictions of a recent theoretical model of the proton. Consistency in determining the values of the form factors at different energies and angles gives support to the techniques of quantum electrodynamics up to q2≅25 f−2. At the extreme conditions of this experiment (975 Mev, 145°) the behavior of the form factors may be exhibiting some anomaly.

24 data tables

No description provided.

No description provided.

No description provided.

More…

Proton form factors from elastic electron-proton scattering

Janssens, T. ; Hofstadter, R. ; Hughes, E.B. ; et al.
Phys.Rev. 142 (1966) 922-931, 1966.
Inspire Record 49127 DOI 10.17182/hepdata.26698

Absolute measurements of the elastic electron-proton cross section have been made with a precision of about 4% for values of the square of the four-momentum transfer, q2, in the range 6.0 to 30.0 F−2 and for electron scattering angles in the range 45° to 145°. To within the experimental errors, it is found that the charge and magnetic form factors of the proton have a common dependence on q2 when normalized to unity at q2=0, and that an accurate representation of the behavior of the form factor and that of the cross sections themselves can be given in terms of a three-pole approximation to the dispersion theory of nucleon form factors.

27 data tables

Axis error includes +- 2./2. contribution (RANDOM ERROR).

Axis error includes +- 2./2. contribution (RANDOM ERROR).

Axis error includes +- 2./2. contribution (RANDOM ERROR).

More…

Neutron form-factors from quasielastic e d scattering

Bartel, W. ; Buesser, F.W. ; Dix, W.R. ; et al.
Phys.Lett.B 30 (1969) 285-288, 1969.
Inspire Record 56662 DOI 10.17182/hepdata.45282

The reaction e+d→e′+n+p was studied at electron scattering angles θ ⩽ 35° for four-momentum transfers of 0.39, 0.565 and 0.78 (GeV/ c ) 2 . By recording electron-neutron and electron-proton coincidences, the ratio of the electron scattering cross sections on quasi-free neutrons and protons was determined. An estimate of the binding effects, based on a Chew-Low-extrapolation, was made. Values for the neutron form factors were derived.

2 data tables

Axis error includes +- 0.0/0.0 contribution (Due to the different effective solid angles for neutron and proton detection in the counters).

No description provided.


Measurements of the polarisation of the recoil proton in elastic electron proton scattering at q-squared=1.3, 1.5 and 1.9(gev/c)squared

Kirkman, H.C. ; Railton, R. ; Rutherglen, J.G. ; et al.
Phys.Lett.B 32 (1970) 519-522, 1970.
Inspire Record 63101 DOI 10.17182/hepdata.28765

An experiment has been carried out to determine the imaginary part of the two-photon exchange amplitude by measuring the polarisation of the recoil proton in elastic electron-proton scattering. The polirisation was found to be −0.006 ± 0.030 at q 2 = 1.3 (GeV/ c ) 2 , +0.052 ± 0.55 at 1.5 (GeV/ c ) 2 and +0.065 ± 0.087 at 1.9 (GeV/ c ) 2 .

1 data table

No description provided.


Elastic electron-proton scattering cross-sections measured by a coincidence technique

Goitein, M. ; Budnitz, R.J. ; Carroll, L. ; et al.
Phys.Rev.D 1 (1970) 2449-2476, 1970.
Inspire Record 61717 DOI 10.17182/hepdata.25070

We have measured elastic electron-proton scattering cross sections in the range of four-momentum transfers from 7 F−2[0.27 (GeV/c)2] to 150 F−2 [5.84 (GeV/c)2] and at scattered electron angles of between 20° and 34° in the laboratory. The estimated errors in the cross sections range from ±2.1% at the lowest momentum transfer to ±9.6% at the highest. Both the scattered electron and the recoil proton were detected, resulting in an overdetermination of the kinematics. When the constraint of a coincident proton is removed, there is no significant change in the estimated cross sections.

15 data tables

No description provided.

No description provided.

No description provided.

More…

Coincidence measurements of single-pion electroproduction near the delta(1236) resonance

Mistretta, C. ; Appel, J.A. ; Budnitz, R.J. ; et al.
Phys.Rev. 184 (1969) 1487-1507, 1969.
Inspire Record 62286 DOI 10.17182/hepdata.26474

Differential cross sections for the reactions e−+p→e−+p+π0 and e−+p→e−+n+π+ have been measured near the Δ(1236) resonance at four-momentum transfers of 0.05, 0.13, 0.25, and 0.4 (GeV/c)2. A few measurements of the π+ angular distribution have been obtained at a four-momentum transfer of 0.6 (GeV/c)2. Cross sections for the π0 reaction are compared with dispersion-theory predictions at several pion-nucleon c.m. energies for each four-momentum transfer. A phenomenological analysis of the π0 results leads to the determination of the magnetic dipole and electric quadrupole partial-wave amplitudes and the γNΔ transition form factor. Evidence is found for the existence of a significant scaler-transverse interference term in the cross section, which is tentatively associated with the resonant scaler quadrupole interaction. Cross sections for π+ electroproduction are compared with dispersion theories using the pion form factor as a free parameter. The results suggest a form factor similar to that of the proton. A fit to the form-factor results, using the ρ-dominance model, requires mρ=560±80 MeV. The rms pion charge radius is estimated to be 〈r2〉12=0.86±0.14 F.

5 data tables

No description provided.

No description provided.

No description provided.

More…

Electromagnetic proton form-factors at squared four momentum transfers between 1-GeV/c**2 and 3-GeV/c**2

Bartel, W. ; Busser, F.W. ; Dix, W.R. ; et al.
Phys.Lett.B 33 (1970) 245-248, 1970.
Inspire Record 63047 DOI 10.17182/hepdata.45284

Electron-proton elastic scattering cross sections have been measured at four-momentum transfers between 1.0 and 3.0 (GeV/ c ) 2 and at electron scattering angles between 10° and 20° and at about 86° in the laboratory. The proton electromagnetic form factors G E and G M were determined. The results indicate that G E ( q 2 ) decreases faster with increasing q 2 than G M ( q 2 ).

2 data tables

Axis error includes +- 2.5/2.5 contribution (Due to counting statisticss, separation of elastic events, beam monitoring, incident energy, scattering angle, proton absorption, solid angle, target length and density).

CONST(NAME=MU) is the magnetic moment.


Backward-angle electron-proton elastic scattering and proton electromagnetic form-factors

Price, L.E. ; Dunning, J.R. ; Goitein, M. ; et al.
Phys.Rev.D 4 (1971) 45-53, 1971.
Inspire Record 67836 DOI 10.17182/hepdata.23074

Elastic electron-proton scattering cross sections were measured at backward angles (80°-90°) in the laboratory for four-momentum transfers between 7 F−2 and 45 F−2. Experimental errors range from 3.1% to 5.3%, including a systematic error estimated to be 1.9% added in quadrature. Electric and magnetic form factors are computed from all the recent data in this q2 range, with allowance made for possible normalization differences. The results show a deviation from the scaling law.

7 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of proton and neutron electromagnetic form-factors at squared four momentum transfers up to 3-GeV/c$^2$

Bartel, W. ; Busser, F.W. ; Dix, W.r. ; et al.
Nucl.Phys.B 58 (1973) 429-475, 1973.
Inspire Record 83685 DOI 10.17182/hepdata.69173

Electron-proton elastic scattering cross sections have been measured at squared four-momentum transfers q 2 of 0.67, 1.00, 1.17, 1.50, 1.75, 2.33 and 3.00 (GeV/ c ) 2 and Electron scattering angles θ e between 10° and 20° and at about 86° in the laboratory. The proton electromagnetic form factors G E p and G M p were determined. The results indicate that G E p ( q 2 ) decreases faster with increasing q 2 than G M p ( q 2 ). Quasi-elastic electron-deuteron cross sections have been determined at values of q 2 = 0.39, 0.565, 0.78, 1.0 and 1.5 (GeV/ c ) 2 and scattering angles between 10° and 12°. At q 2 = 0.565 (GeV/ c 2 data have also been taken with θ e = 35° and at q 2 = 1.0 and 1.5 (GeV/ c ) 2 with θ e = 86°. Electron-proton as well as electron-neutron scattering cross sections have been deduced by the ratio method. The theoretical uncertainties of this procedure are shown to be small by comparison of the bound with the free proton cross sections. The magnetic form factor of the neutron G M n derived from the data is consistent with the scaling law. The charge form factor of the neutron is found to be small.

14 data tables

Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).

Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).

Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).

More…

Electron Scattering at 4-Degrees with Energies of 4.5-GeV - 20-GeV

Stein, S. ; Atwood, W.B. ; Bloom, Elliott D. ; et al.
Phys.Rev.D 12 (1975) 1884, 1975.
Inspire Record 100597 DOI 10.17182/hepdata.4669

This paper presents the results of the analysis of a single-arm inelastic-electron-scattering experiment at an angle of 4°. We present data on the turnon of scaling in the low-q2 region 0.1<q2<1.8, the neutron-proton comparison at large values of the scaling variable ω, resonance excitation, and the shadowing in scattering from heavy nuclei.

21 data tables

No description provided.

No description provided.

No description provided.

More…