Results are presented on the topological cross sections obtained for antiproton-proton interactions from an exposure of the Fermilab 30-inch bubble chamber to a 100 GeV/ c negative beam enriched in p 's. The p p inelastic cross section is found to be σ inel = 34.6 ± 0.4 mb, and the average inelastic charged particle multiplicity to be 〈 n 〉 = 6.74 ± 0.05.
ERRORS ARE STATISTICAL ONLY EXCEPT FOR 2-PRONG CROSS-SECTIONS.
EXPONENTIAL FIT TO ELASTIC T DISTRIBUTION TO CORRECT FOR AN APPARENT LOSS OF EVENTS AT SMALL -T.
The differential cross section for π−−p elastic scattering has been measured at 13.8 and 22.6 GeV/c up to −t=5 (GeV/c)2. The dips in the angular distribution at −t≈0.8 and 2.8 (GeV/c)2 previously observed at lower momenta become less prominent at higher momentum. The −t=2.8 (GeV/c)2 dip is still observed at 13.8 GeV/c, but at 22.6 GeV/c it has become a sharp kink in the angular distribution. At large momentum transfers, dσdt at fixed t is still decreasing with increasing s, but at a slower rate in the 14- to 23-GeV/c region than at lower momenta.
No description provided.
No description provided.
The differential cross sections for π−p elastic scattering over the angular range 155° to 177° in the center of mass have been measured at 33 incident-pion momenta in the range 600 to 1280 MeV/c. Angular distributions are presented. The extrapolated differential cross sections at 180° show considerable structure, in particular a dip near 1150 MeV/c. In general the near-180° cross sections do not agree with existing phase shift solutions above 1000 MeV/c
INTERPOLATED DATA.
INTERPOLATED DATA.
INTERPOLATED DATA.
Results are presented of a wire-spark-chamber spectrometer measurement of the differential cross section for π−p elastic scattering at 14.15 GeV/c. The region covered in the square of the four-momentum transfer, t, is 0.01<−t<0.78 (GeV/c)2. The cross section is found to obey very nearly a simple exponential t dependence with no evidence of structure. A fit to the data of the form dσdt∝exp(bt+ct2) on the range 0.05<−t<0.78 (GeV/c)2 (i.e., above the region affected by Coulomb scattering) yields b=8.26±0.10 (GeV/c)2 and c=1.01±0.17 (GeV/c)−4. Considering the results of previous measurements, b≃11 (GeV/c)−2 for −t<0.05 (GeV/c)2, a deviation from the simple exponential near −t≃0.05 (GeV/c)2 is indicated.
No description provided.
Differential cross sections for elastic p−p scattering have been measured at 285, 348, 398, 414, 455, 497, 530, and 572 MeV kinetic energy. The experiment was performed at the CERN synchrocyclotron, using multiwire proportional chambers placed directly in a proton beam. Scattering was observed for 1.5°≲θ≲10° in the laboratory system. The ratio αp of the real and imaginary parts of the non-spin-flip nuclear forward amplitude was derived from the interference between the Coulomb and nuclear amplitudes. The values obtained are model-dependent, but in this energy range αp is positive and decreases with energy. Qualitatively good agreement with dispersion-relation predictions is observed.
No description provided.
No description provided.
No description provided.
The contradiction of the σ term of pion-nucleon scattering as deduced from the Karlsruhe-Helsinki phase shifts with the smaller value calculated by the chiral perturbation theory of QCD is well known. In an effort to clarify the discrepancy we have determined the real part of the isospin-even forward-scattering amplitude of pion-nucleon scattering at a pion energy Tπ=54.3 MeV by measurement of the elastic scattering of positive and negative pions on protons in the Coulomb-nuclear interference region. The deduced value is in agreement with the prediction of the Karlsruhe-Helsinki phase-shift analysis for that energy. The resulting large value of the σ term may be interpreted as being due to the influence of s¯s sea pairs even at large distances (small Q2) as previously suggested by the European Muon Collaboration measurement of deep-inelastic scattering of polarized muons on polarized protons.
No description provided.
The asymmetry parameter A in π−p elastic scattering at incident pion laboratory kinetic energies Tπ of 98, 238, and 2922 MeV and in π−p charge-exchange scattering π−p→π0n at Tπ=238, 292, and 310 MeV have been measured over a wide range of scattering angles (typically from about 60° to 130° c.m.) with a polarized proton target. The data have been used in an energy-independent phase-shift analysis to improve the precision of the pion-nucleon phase shifts, to set new limits on violation of isospin conservation in the pion-nucleon S wave, and to confirm significant charge dependence in the P32 wave.
Axis error includes +- 0.0/0.0 contribution (?////BACKGROUND SUBTRACTION SMALL).
Axis error includes +- 0.0/0.0 contribution (?////BACKGROUND SUBTRACTION SMALL).
Axis error includes +- 0.0/0.0 contribution (?////BACKGROUND SUBTRACTION SMALL).
Backward elastic scattering of π± on protons has been measured for incident pion momenta between 30 and 90 GeV/c and 0≤−u≤0.5 (GeV/c)2. The u dependence of the cross sections is similar to that observed at lower momenta, and Regge models give acceptable fits to the data.
No description provided.
No description provided.
No description provided.
The real part of the isospin-even forward-scattering amplitude of pion-nucleon scattering has been determined at a pion energy of Tπ=55 MeV by measurement of the elastic scattering of positive and negative pions on protons within the Coulomb-nuclear interference region. The value confirms the prediction of the Karlsruhe-Helsinki phase-shift analysis for that energy. These phases have been used to determine the σ term of pion-nucleon scattering by means of dispersion relations, resulting in a value for σ which is in contradiction with chiral perturbation theory of QCD.
PI- P cross sections normalised to the Coulomb cross section taken from the Karlesruhe-Helsinki phase shift analysis (R. Koch, E. Pietarinen (NP A336(80)331).
Twenty-nine proton-proton differential elastic cross sections for lab momenta p0 from 11 to 31.8 BeV/c, at four-momentum transfers squared, −t, from 2.3 to 24.4 (BeV/c)2, have been measured at the Brookhaven alternating gradient synchrotron. The circulating proton beam impinged upon a thin CH2 internal target. Both scattered protons from p−p elastic events were detected by scintillation-counter telescopes which were placed downstream from deflection magnets set at the appropriate angles to the incident beam. The angular correlation of the protons, their momenta, and the coplanarity of the events were determined by the detection system. The results show that at high momentum transfers the differential cross section, dσdt, depends strongly upon the energy; for −t=10 (BeV/c)2, the value of dσdt at p0=30 BeV/c is smaller by a factor∼1000 than at p0=10 BeV/c. At all energies, dσdt falls rapidly with increasing |t| for scattering angles up to about 65° (c.m.), while in the range from 65 to 90° the cross section falls only by a factor of about 2. The smallest cross section measured was 9×10−37 cm2 sr−1 (c.m.), at p0=31.8 BeV/c and −t=20.4 (BeV/c)2; this is about 3×10−12 of the zero-degree cross section at the same energy.
'1'. '2'.