The asymmetry A = (σ + −σ − ) (σ + +σ − ) of the reaction γ p↑↓ → π 0 p was measured at the Deutsches Elektronen Synchrotron DESY, Hamburg at a mean photon energy of 4.0 GeV in the four-momentum transfer range 0.2 (GeV/ c ) 2 ⩽ −t ⩽ 1.1 (GeV/ c ) 2 in steps of approximately 0.08 (GeV/ c ) 2 . The π 0 -meson and the proton were detected in coincidence. The asymmetry is compatible with zero in the t -range 0.2 (GeV/ c ) 2 ⩽ − t ⩽ 0.4 (GeV/ c ) 2 and negative in the t -range ⩾ 0.5 (GeV/ c ) 2 .
No description provided.
Energy-integrated reaction cross sections have been measured at energies ranging from 38 to 80 MeV/nucleon for various exotic neutron-rich isotopes of Al, Si, P, S, Cl, Ar, K, Ca, Sc, and Ti stopping in Si. An experimental technique is employed where Si detectors are used for both particle identification and to serve as the target material. The reduced strong absorption radii r02 are deduced and compared with other experimental results. The radius dependence on the neutron number was studied and a trend of increasing reduced radius with neutron excess was found. This behavior is similar to that seen in lighter systems, although less pronounced than found there. The implications of this result on the conjectured existence of neutron halo or skin nuclei is discussed.
No description provided.
No description provided.
No description provided.
The ratio R = (d σ /d t )( γ d → ( π 0 n)p)/(d σ /d t )( γ d → ( π 0 p)n), was measured at the Deutsches Elektronen-Synchrotron DESY, Hamburg at a mean photon energy of 4.0 GeV in the four-momentum transfer range between t = − 0.2 (GeV/ c ) 2 and t = − 1.2 (GeV/ c ) 2 in steps of approximately 0.08 (GeV/ c ) 2 . The ratio R is less than 1 up to t = − 0.9 (GeV/ c ) 2 and shows a broad minimum around t = − 0.6 (GeV/ c ) 2 . Corrections for nuclear effects in the deuterium were not applied but are shown to be small.
No description provided.
The differential cross section of the reaction γ p → π 0 p has been measured at the Deutsches Elektronen Synchrotron DESY, Hamburg, at a mean photon energy of 4.0 GeV in the four-momentum transfer range between t = −0.2 (GeV/ c ) 2 and t = −1,2 (GeV/ c ) 2 in steps of approximately 0.08 (GeV/ c ) 2 . The experiment was carried out in connection with the measurements of the photoproduction of π 0 mesons on deuterium, which were described in the preceding article. In the present paper the contributions arising from background reactions are discussed in more detail.
No description provided.
The differential cross-section of the reaction γ p→ η p has been measured at the Deutsches Elektronen Synchrotron (DESY) at mean photon energies of 4 and 6 GeV in the momentum transfer range between zero and 1.4 GeV 2 . The data show a slight maximum around t =−0.15 GeV 2 and fall off smoothly till t =−1.4 GeV 2 . There is no indication of a dip around t =−0.5 GeV 2 .
Axis error includes +- 19/19 contribution.
Axis error includes +- 19/19 contribution.
An experiment has been performed to study the inclusive photoproduction of π 0 mesons. Photoproduced π 0 's were detected in a hodoscope consisting of 14 lead glass Cerenkov counters. To obtain the cross sections at a photon energy of 6 GeV we used the photon-difference method. Data are presented in terms of the Feynman variable x = q ‖ ∗ (√s/2) and the trnasverse momentum q⊥. We have measured four q ⊥ distributions at x = 0.2, 0.4, 0.6 and 0.8. The results dhow that the π 0 rate at small values of q ⊥ is smaller than the π± rate. The data can be fitted smoothly by a form A exp (− Bq ⊥ 2 ) with a value about 3.5 GeV −2 for the slope parameter B .
No description provided.
No description provided.
No description provided.
A study of multiplicity and pseudorapidity distributions of inclusive photons measured in pp and p$-$Pb collisions at a center-of-mass energy per nucleon$-$nucleon collision of $\sqrt{s_{\rm NN}} = 5.02$ TeV using the ALICE detector in the forward pseudorapidity region $2.3 < \eta_{\rm lab} < 3.9$ is presented. Measurements in p$-$Pb collisions are reported for two beam configurations in which the directions of the proton and lead ion beam were reversed. The pseudorapidity distributions in p$-$Pb collisions are obtained for seven centrality classes which are defined based on different event activity estimators, i.e., the charged-particle multiplicity measured at midrapidity as well as the energy deposited in a calorimeter at beam rapidity. The inclusive photon multiplicity distributions for both pp and p$-$Pb collisions are described by double negative binomial distributions. The pseudorapidity distributions of inclusive photons are compared to those of charged particles at midrapidity in \pp collisions and for different centrality classes in p$-$Pb collisions. The results are compared to predictions from various Monte Carlo event generators. None of the generators considered in this paper reproduces the inclusive photon multiplicity distributions in the reported multiplicity range. The pseudorapidity distributions are, however, better described by the same generators.
Inclusive photon multiplicity distribution measured within $2.3<\eta_{\rm lab}<3.9$ in pp collisions at $\sqrt{s} = 5020~\mathrm{GeV}$.
Inclusive photon multiplicity distribution measured within $2.3<\eta_{\rm lab}<3.9$ in p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5020~\mathrm{GeV}$.
Inclusive photon multiplicity distribution measured within $2.3<\eta_{\rm lab}<3.9$ in Pb-p collisions at $\sqrt{s_\mathrm{NN}} = 5020~\mathrm{GeV}$.
Emission of intermediate mass fragments (IMFs) (Z>~3) from central collisions of 40Ar+45Sc (E/A=35–115 MeV), 58Ni+58Ni (E/A=35–105 MeV), and 86Kr+93Nb (E/A=35–95 MeV) was studied. For each system, the average number of IMFs per event increased with beam energy, reached a maximum, and then decreased. The beam energy of peak IMF production increased linearly with the combined mass of the system. The number of IMFs emitted at the peak also increased with the system mass. Percolation calculations showed a weaker dependence of the peak beam energy and the number of IMFs on the total mass of the system.
Uncertainty in EKIN is 1 PCT.
Results of the total cross section differenceΔσL in anp transmission experiment at 1.19, 2.49 and 3.65 GeV incident neutron beam kinetic energies are presented. Measurements were performed at the Synchrophasotron of the Laboratory of High Energies of the Joint Institute for Nuclear Research in Dubna. Results were obtained with a polarized beam of free quasi-monochromatic neutrons passing through the new Dubna frozen spin proton target. The beam and target polarizations were oriented longitudinally. The present results were obtained at the highest energies of free polarized neutrons that can be reached at present. They extend the energy range of existing results from PSI, LAMPF and Saclay measured between 0.066 and 1.10 GeV. The new results are compared withΔσL(pn) data determined as a difference betweenΔσL(pd) andΔσL(pp) ANL-ZGS measurements. The values ofΔσL for the isospin stateI=0 were deduced using knownpp data.
Errors contain statistical and systematic errors added in quadrature. Axis error includes +- 0.05/0.05 contribution (An additional error due to the extrapolation towards zero solid angle).
No description provided.
We have studied inclusive KS0, Λ, and Λ¯ production in π+d interactions at 24 GeV/c. The observed cross sections are 2.5±0.13 mb for KS0, 1.62±0.09 mb for Λ, and 0.12±0.02 mb for Λ¯. Longitudinal- and transverse-momentum distributions of the produced particles are presented. The average charged multiplicities of the system associated with a KS0 or with a Λ are presented and discussed. A nonzero average Λ polarization (-0.10±0.03) is observed. The x distribution of the backward (forward) KS0 and Λ produced in the reaction are in agreement with the x distribution of valence quarks in nucleons in nuclear target (pion beam), as predicted by the quark-recombination model of particle production applied to nuclear targets.
Axis error includes +- 0.0/0.0 contribution (?////THE QUOTED IN THE TABLES ERROR INCLUDE ESTIMATES OF UNCERTAINTY IN EACH OF THE CORRECTIONS MADE IN ADDITION TO THE STATISTICAL ERRORCORRECTIONS HAVE BEEN MADE FOR DETECTION, MEASURING, AND FITTING LOSSES AS WELL AS FOR NEUTRAL DECAY MODES OF THE STRANGE PARTICLESNO CORRECTION WAS MADE FOR CONTAMINATION FROM KL'S NOR FOR UNAVOIDABLE INCLUSION OF SIGMA0 EVENTS).
Axis error includes +- 0.0/0.0 contribution (?////THE QUOTED IN THE TABLES ERROR INCLUDE ESTIMATES OF UNCERTAINTY IN EACH OF THE CORRECTIONS MADE IN ADDITION TO THE STATISTICAL ERRORCORRECTIONS HAVE BEEN MADE FOR DETECTION, MEASURING, AND FITTING LOSSES AS WELL AS FOR NEUTRAL DECAY MODES OF THE STRANGE PARTICLESNO CORRECTION WAS MADE FOR CONTAMINATION FROM KL'S NOR FOR UNAVOIDABLE INCLUSION OF SIGMA0 EVENTS).
Axis error includes +- 0.0/0.0 contribution (?////THE QUOTED IN THE TABLES ERROR INCLUDE ESTIMATES OF UNCERTAINTY IN EACH OF THE CORRECTIONS MADE IN ADDITION TO THE STATISTICAL ERRORCORRECTIONS HAVE BEEN MADE FOR DETECTION, MEASURING, AND FITTING LOSSES AS WELL AS FOR NEUTRAL DECAY MODES OF THE STRANGE PARTICLESNO CORRECTION WAS MADE FOR CONTAMINATION FROM KL'S NOR FOR UNAVOIDABLE INCLUSION OF SIGMA0 EVENTS).