Inclusive and semi-inclusive cross sections for gp0 production in 100, 200, and 360 GeV/c π−p interactions are presented. Differential cross sections for ρ0 production as functions of c.m. rapidity and transverse momentum are compared with the corresponding differential cross sections for pion production. Effects of various methods of estimating background on the values obtained for ρ0 production cross sections are discussed. About 10% of the final-state charged pions appear to come from ρ0 decay. Thus, while ρ0 production and decay is a significant source of final-state pions, other sources must contribute the majority of the produced pions.
No description provided.
No description provided.
No description provided.
Final results of our measurements of elastic proton-proton scattering at the CERN Intersecting Storage Rings (ISR) for c.m. energies √ s from 23 to 63 GeV and momentum transfers | t | from 0.8 to 10 GeV 2 are presented. Absolute differential cross sections have been obtained using the split-field magnet detector facility (SFM) at the five standard energies for integrated luminosities ranging from 0.3 to 4.9 (pb) −1 . The rising total cross section is found to define a scale for diffractive phenomena near the forward peak, including the position of the diffraction minimum near t = −1.4 GeV 2 . The cross section at the minimum is strongly energy dependent, approximately as the ratio of the real to imaginary part of the scattering amplitude in the forward direction. The phase of the scattering amplitude is found to change sign near the minimum. The component of diffraction scattering beyond the second maximum has a much weaker t -dependence than expected in simple eikonal or constituent pictures connecting this region to the forward peak. A further break in slope is observed near t = −6 GeV 2 . There is no evidence for another minimum for t values up to 10 GeV 2 .
No description provided.
No description provided.
No description provided.
Neutral-pion production in pp interactions has been studied using 8000 photon conversions in the Fermilab 15-ft bubble chamber. Inclusive π0 multiplicity moments and ππ correlation integrals are presented; f200 is determined to be + 3.0±0.8. For the semi-inclusive π0 multiplicity distributions we find 〈n(π0)〉n− to increase with n−, while the dispersions are n− independent. Results on f2−0, f200, and f2,n−00 are compared to predictions of simple cluster models.
No description provided.
No description provided.
No description provided.
We present the results of a systematic analysis of charge-exchange double dissociation in proton-proton collisions at the CERN Intersecting Storage Rings. The data, obtained with the Split-Field Magnet detector, cover the entire ISR energy range between s = 23 GeV and s = 63 GeV at five standard energies.
CHARGE EXCHANGE DOUBLE DIFFRACTION DISSOCIATION OF PROTONS. THESE CROSS SECTIONS WERE REPORTED IN G. GOGGI ET AL., PL 72B, 265 (1977).
No description provided.
THE SEMI INCLUSIVE DENSITY MATRICES ARE ALSO GIVEN (P P --> DEL++ P PI- + DEL0 P PI+).
Measurements of the invariant cross section Ed3σd3p are presented for the production of hadrons (π, K, p, and p¯) at large transverse momentum (p⊥) by 200-, 300-, and 400-GeV protons incident on H2, D2, Be, Ti, and W targets. The measurements were made at a laboratory angle of 77 mrad, which corresponds to angles near 90° in the c.m. system of the incident proton and a single nucleon at rest. The range in p⊥ for the data is 0.77≤p⊥≤6.91 GeV/c, corresponding to values of the scaling variable x⊥=2p⊥s from 0.06 to 0.64. For p−p collisions, the pion cross sections can be represented in the region x⊥>35 by the form (1p⊥n)(1−x⊥)b, with n=8 and b=9. The ratio of π+ to π− production grows as a function of x⊥ to a value larger than 2 at x⊥≳0.5. The ratios of the production of K+ and protons to π+ and of K− and antiprotons to π− also scale with x⊥ for p−p collisions. The K±, p, and p¯ fitted values for n and b are given. Particle ratios are also presented for D2, Be, Ti, and W targets and the dependences on atomic weight (A) are discussed.
No description provided.
No description provided.
No description provided.
The measurement of the proton-proton total cross section performed by the CERN-Pisa-Rome-Stony Brook Collaboration at the CERN ISR is discussed in detail. The total interaction rate, the elastic scattering rate in the forward direction, and the machine luminosity were measured simultaneously to obtain three different determinations of the total cross section. Consistent results were found, which made it possible to prove the reliability of the Van der Meer luminosity calibration within +-0.9% and to achieve a precision of +-0.6% in the measurement of the total cross section.
No description provided.
Proton-proton and proton-deuteron elastic scattering has been measured for incident laboratory energy from 50 to 400 GeV; minimum |t| values were, for p−p, 0.0005 (GeV/c)2, and for p−d, 0.0008 (GeV/c)2. From the differential cross sections we have determined the ratios of the real to imaginary parts of the forward scattering amplitude, ρpp and ρpd, for p−p and p−d scattering. Using a Glauber approach and a sum-of-exponentials form factor we obtain ρpn for p−n scattering.
No description provided.
No description provided.
FROM GLAUBER ANALYSIS. THE SYSTEMATIC ERRORS DUE TO THE UNCERTAINTY IN THE DEUTERON FORM FACTOR ARE COMPARABLE WITH THE STATISTICAL ERRORS.
We compare high-transverse-momentum (P⊥) inclusive π0 production from π−, K−, p, and p¯ beams, at 100 and 200 GeV/c, for center-of-mass (c.m.) angles ranging from 2° to 115° and P⊥<4.5 GeV/c. The ratio σ(pp→π0X)σ(πp→π0X) decreases with increasing P⊥, and changes dramatically with c.m. angle. Also, the ratios σ(K−p→π0X)σ(π−p→π0X) and σ(p¯p→π0X)σ(pp→π0X) are approximately constant. These measurements are consistent with a theoretical viewpoint in which constituents of the incident hadrons undergo a hard-scattering subprocess.
No description provided.
No description provided.
No description provided.
Measurements of the total cross section have been performed at the ISR with c.m. energies between 23.5 GeV and 62.5 GeV. Two independent experimental methods have been applied, a measurement of total interaction rate and of small angle elastic scattering. Both experiments give consistent results showing that the total cross section increases by (11.8±1.5) % over the ISR energy range. This experiment has also measured the slope of the forward diffraction peak in elastic scattering at small momentum transfer. The elastic cross section shows the same relative rise as the total cross section, and the ratio λ of elastic to total cross section approaches a constant value of λ =0.178±0.003.
.
TOTAL CROSS SECTION FROM (INTERACTION RATE)/(LUMINOSITY). SYSTEMATIC ERROR <0.8 PCT.
TOTAL CROSS SECTION FROM APPLYING THE OPTICAL THEOREM TO SMALL ANGLE ELASTIC SCATTERING EXTRAPOLATED TO T=0.
Measurements of the polarization parameter and angular distributions in pp elastic scattering at incident energies of 100 and 300 GeV are reported. The data cover the kinematic range 0.18<−t<2.0 GeV2. They are found to be consistent with absorption-model predictions.
No description provided.
No description provided.
THE ANGULAR DISTRIBUTION IN THE PUBLISHED FIGURE IS NORMALIZED TO D(SIG)/DT AT -T = 0.55 GEV**2 FROM AKERLOF ET AL., PR D14, 2864 (1976).