We have measured the cross-section of the reaction e + e − → γγ at center of mass energies around the Z 0 mass. The results are in good agreement with QED predictions. For the QED cutoff parameters the limit of Λ + > 103 GeV and Λ − 118 GeV are found. For the decays Z 0 → γ ,Z 0 → π 0 γ , Z 0 → γγγ we find upper limits of 2.9 × 10 −4 ,2.9×10 −4 ,4.1×10 −4 and 1.2×10 −4 , respectively. All limits are at 95% CL.
No description provided.
We have measured the partial widths for the three reactions e + e − → Z 0 → e + e − , μ + μ − , τ + τ − . The results are Γ ee = 84.3±1.3 MeV, √ Γ ee Γ μμ =83.9±1.4 MeV, and √ Γ ee Γ ττ =83.9±1.4 MeV, where the errors are statistical. The systematic errors are estimated to be 1.0 MeV, 0.9 MeV, and 1.4 MeV, respectively. We perform a simultaneous fit to the cross sections for the e + e − →e + e − , μ + μ − , and τ + τ − data, the differential cross section as a function of polar angle for the electron data, and the forward- backward asymmetry for the muon data. We obtain the leptonic partial with Γ ℓℓ =84.0±0.9 (stat.) MeV. The systematic error is estimated to be 0.8 MeV. Also, we obtain the axial-vector and vector weak coupling constants of charged leptons, g A =−0.500±0.003 and g ν =−0.064 −0.013 +0.017 .
Cross section from 1990 data.
Visible cross section obtained using the cuts required by Method I (see text of paper). (1989 and 1990 data).
Visible cross section obtained using the cuts required by Method II (see text of paper). (1989 and 1990 data). RE = E+ E- --> E+ E- (GAMMA).
Data on the multiplicity and inclusive spectra of γ produced in inelastic pNe20 and pN interactions at 300 GeV are presented. The γ multiplicity for pNe20 interactions is 11.43±0.23, and the ratio of 〈nγ〉 for pNe20 and pN interactions is 1.48±0.05. From an analysis of the effective-mass distributions, 〈nπ0〉=4.91±0.52 and 〈nη0〉=1.47±0.33. In fact, η0 production is much higher in pNe20 interactions [R(η0π0)=0.66±0.12 for np≥21] than in pN interactions [R(η0π0)=0.06±0.04]. No η′(958) signal is seen. Strong correlations between 〈nγ〉 and np, the number of secondary protons, are observed, primarily from the central and target fragmentation regions. Inclusive y* and p⊥ spectra are analyzed and evidence for low-energy cascading and rescattering of fast particles in the projectile fragmentation region is discussed. The data are compared to the predictions of the additive quark model, the Lund model, and the dual parton model.
No description provided.
GAMMA-MULTIPLICITY FOR (PROTON-NUCLEON)-INTERACTION WAS OBTAINED AT AVERAGING OVER (PP) AND (PN) EVENTS, AND THEN WAS USED IN THE PRESENTED RATIO.
No description provided.
Data on multiplicity, correlations, and inclusive spectra of KS0 mesons and Λ0(Λ¯0) hyperons produced with xF≤0 in inelastic pNe20 and pN interactions at 300 GeV are presented and compared. The inclusive cross sections for pNe20 (pN) with xF≤0 are 61.1±2.8 mb (3.34±0.64 mb) for KS0, 40.8±2.5 mb (1.89±0.29 mb) for Λ0, and 3.9±0.5 mb (0.31±0.08 mb) for Λ¯0. The multiplicity ratio for pNe20 and pN interactions is 1.58±0.16 for KS0, 1.95±0.23 for Λ0, and 1.12±0.43 for Λ¯0. We have observed the Σ0(1193) hyperon and measured the average multiplicity (nΣ0=0.049±0.027) for xF≤0. We have also observed the strange resonances K*(892), K*(1415), and Σ*(1385) with xF≤0 and measured the fraction of V0 coming from each resonance. Λ0 polarization for xF≤0 is measured and shows a decrease as p⊥ increases [pΛ(pNe20)≈−0.25 at p⊥=1.5 GeV/c], in agreement with other experiments which measure polarization in the region xF≫0. Since (43±7)% of the Λ0 are produced in Σ0→Λ0γ decays, the Λ0 polarization is significantly greater than the measured values. Experimental results are compared to predictions of the Lund model and the dual parton model of soft hadron-nucleus and hadron-nucleon interactions.
No description provided.
Axis error includes +- 0.0/0.0 contribution (NOT GIVEN).
No description provided.
A determination of the partial width Γ c c ̄ of the Z 0 boson into charm quark pairs is presented, based on a total sample of 36 900 Z 0 hadronic decays measured with the DELPHI detector at the LEP collider. The production rate of cc̄ events is derived from the inclusive analysis of charged pions coming from the decay of charmed meson D ∗+ → D 0 π + and D ∗− → D ̄ 0 π − where the π ± is constrained by kinematics to have a low p T with respect to the axis. The probability to produce these π ± from D ∗± decay in cc̄ events is taken to be 0.31 ±_0.05 as measured at √ s =10.55 GeV. The measured relative partial width Γ c c ̄ Γ h = 0.162± 0.030 ( stat. ) ±0.050 ( syst. ) is in good agreement with the standard moel value of 0.171. Together with our previous measurement of the total hadronic width Γ h this implies Γ c c ̄ = 282±53 ( stat. )±88( syst. ) MeV .
No description provided.
The error includes the experimental uncertainties (±0.003), uncertainties of hadronisation corrections and of the degree of parton virtualities to which the data are corrected, as well as the uncertainty of choosing the renormalisation scale.
Jet production rates using the E0 recombination scheme.
Jet production rates using the E recombination scheme.
Jet production rates using the p0 recombination scheme.
An analysis of global event-shape variables has been carried out for the reaction e + e − →Z 0 →hadrons to measure the strong coupling constant α s . This study is based on 52 720 hadronic events obtained in 1989/90 with the ALEPH detector at the LEP collider at energies near the peak of the Z-resonance. In order to determine α s , second order QCD predictions modified by effects of perturbative higher orders and hadronization were fitted to the experimental distributions of event-shape variables. From a detailed analysis of the theoretical uncertainties we find that this approach is best justified for the differential two-jet rate, from which we obtain α s ( M Z 2 ) = 0.121 ± 0.002(stat.)±0.003(sys.)±0.007(theor.) using a renormalization scale ω = 1 2 M Z . The dependence of α s ( M Z 2 ) on ω is parameterized. For scales m b <ω< M Z the result varies by −0.012 +0.007 .
The second DSYS error is the theoretical error.
We have measured the forward-backward asymmetry in Z 0 → b b decays using hadronic events containing muons and electrons. The data sample corresponds to 118 200 hadronic events at √ s ≈ M z . From a fit to the single and dilepton p and P ⊥ spectra, we determine A b b =0.130 −0.042 +0.044 including the correction for B 0 − B 0 mixing.
Observed asymmetry from fit to single and dilepton P and PT spectra assuming no mixing.
Asymmetry corrected for the effects of mixing using the L3 observed mixing parameter chi(B) = 0.178 +0.049,-0.040.
SIN2TW determined from the asymmetry measurement.
None
CHARGED IS CUMULATIVE PI+-, OR K+-, OR P+-.
CHARGED IS CUMULATIVE PI+-, OR K+-, OR P+-.
No description provided.
In four-jet events from e + e − →Z 0 →multihadrons one can separate the three principal contributions from the triple-gluon vertex, double gluon-bremsstrahlung and the secondary quark-antiquark production, using the shape of the two-dimensional angular distributions in the generalized Nachtmann-Reiter angle θ NR ∗ and the opening angle of the secondary jets. Thus one can identify directly the contribution from the triple-gluon vertex without comparison with a specific non-QCD model. Applying this new method to events taken with the DELPHI-detector we get for the ratio of the colour factor N c to the fermionic Casimir operator C F : N c C F = 2.55 ± 0.55 ( stat. ) ± 0.4 ( fragm. + models ) ± 0.2 ( error in bias ) in agreement with the value 2.25 expected in QCD from N c =3 and C F = 4 3 .
NC, CF, and TR are the color factors for SU(3) group.