Measurements on large-angle photoproduction of π+ mesons from hydrogen have been made at the Stanford Linear Accelerator Center for photon energies between 5 and 15.5 GeV and u values from +0.05 to -1.8 (GeV/c)2. The measured cross section decreased with energy approximately as k−3, showing no shrinkage in this range of u values. Furthermore, it had a smooth u dependence with no sign of a dip at u≃−0.15 (GeV/c)2 as would be expected from nucleon exchange. π−Δ++ production was measured at 5 GeV and shows a rapid decrease with increasing |u|.
No description provided.
No description provided.
No description provided.
We have measured elastic electron-proton scattering cross sections in the range of four-momentum transfers from 7 F−2[0.27 (GeV/c)2] to 150 F−2 [5.84 (GeV/c)2] and at scattered electron angles of between 20° and 34° in the laboratory. The estimated errors in the cross sections range from ±2.1% at the lowest momentum transfer to ±9.6% at the highest. Both the scattered electron and the recoil proton were detected, resulting in an overdetermination of the kinematics. When the constraint of a coincident proton is removed, there is no significant change in the estimated cross sections.
No description provided.
No description provided.
No description provided.
Differential cross sections for the reactions e−+p→e−+p+π0 and e−+p→e−+n+π+ have been measured near the Δ(1236) resonance at four-momentum transfers of 0.05, 0.13, 0.25, and 0.4 (GeV/c)2. A few measurements of the π+ angular distribution have been obtained at a four-momentum transfer of 0.6 (GeV/c)2. Cross sections for the π0 reaction are compared with dispersion-theory predictions at several pion-nucleon c.m. energies for each four-momentum transfer. A phenomenological analysis of the π0 results leads to the determination of the magnetic dipole and electric quadrupole partial-wave amplitudes and the γNΔ transition form factor. Evidence is found for the existence of a significant scaler-transverse interference term in the cross section, which is tentatively associated with the resonant scaler quadrupole interaction. Cross sections for π+ electroproduction are compared with dispersion theories using the pion form factor as a free parameter. The results suggest a form factor similar to that of the proton. A fit to the form-factor results, using the ρ-dominance model, requires mρ=560±80 MeV. The rms pion charge radius is estimated to be 〈r2〉12=0.86±0.14 F.
No description provided.
No description provided.
No description provided.
The charge excharge reaction K − p → K 0 n has been studied in a event/μb exposure of the CERN 2m hydrogen bubble chamber to a 3.95 GeV/ c K − beam. The differential cross section d σ /d t exhibits a change of slope at −1 ≈ 0.8 GeV 2 .
No description provided.
No description provided.
Measurements have been made on Compton scattering for photon energies between 5 and 17 GeV and t values from -0.06 to -1.1 (GeVc)2. The data were obtained by performing a coincidence between the Stanford Linear Accelerator Center 1.6-GeVc spectrometer and a Lucite shower counter. The scattering appears diffractive out to high t values, but the cross sections seem not to be in good agreement with the prediction of a strict vector-meson-dominance model.
No description provided.
No description provided.
No description provided.
The differential cross sections for π−p elastic scattering over the angular range 155° to 177° in the center of mass have been measured at 33 incident-pion momenta in the range 600 to 1280 MeV/c. Angular distributions are presented. The extrapolated differential cross sections at 180° show considerable structure, in particular a dip near 1150 MeV/c. In general the near-180° cross sections do not agree with existing phase shift solutions above 1000 MeV/c
INTERPOLATED DATA.
INTERPOLATED DATA.
INTERPOLATED DATA.
Measurements have been made of the total charge-exchange cross section π − p to π 0 n over the laboratory kinetic energy range 90 to 290 MeV. The data have an absolute accuracy of typically 1%, and have here been used to determine the pion-nucleon P 13 phase shift.
QUADRATIC INTERPOLATION.
No description provided.
No description provided.
Measurements have been made of the π ∓ proton total cross sections over the laboratory kinetic energy range 70 to 290 MeV. The absolute accuracy of the data is generally 0.5 %, but decreases to 1 % for some points where applied corrections are large or where low particle fluxes limit the statistical accuracy.
No description provided.
No description provided.
No description provided.
Elastic electron-proton scattering cross sections were measured at backward angles (80°-90°) in the laboratory for four-momentum transfers between 7 F−2 and 45 F−2. Experimental errors range from 3.1% to 5.3%, including a systematic error estimated to be 1.9% added in quadrature. Electric and magnetic form factors are computed from all the recent data in this q2 range, with allowance made for possible normalization differences. The results show a deviation from the scaling law.
No description provided.
No description provided.
No description provided.
The K − p differential and total elastic cross-sections have been measured at 14.25 GeV/ c . The results have been compared with various Regge models.
No description provided.