We have searched for exclusive 2-photon production in proton-antiproton collisions at sqrt{s} = 1.96 TeV, using 532/pb of integrated luminosity taken by the Run II Collider Detector at Fermilab. The event signature requires two electromagnetic showers, each with transverse energy E_T > 5 GeV and pseudorapidity |eta|<1.0, with no other particles detected in the event. Three candidate events are observed. We discuss the consistency of the three events with gamma-gamma, pi0-pi0, or eta-eta production. The probability that other processes fluctuate to 3 events or more is 1.7x10^-4. An upper limit on the cross section of p+pbar --> p+gamma-gamma+pbar is set at 410 fb with 95% confidence level.
Upper limit on the cross section.
We report the measurements of the t anti-t production cross section and of the top quark mass using 1.02 fb^-1 of p anti-p data collected with the CDFII detector at the Fermilab Tevatron. We select events with six or more jets on which a number of kinematical requirements are imposed by means of a neural network algorithm. At least one of these jets must be identified as initiated by a b-quark candidate by the reconstruction of a secondary vertex. The cross section is measured to be sigma_{tt}=8.3+-1.0(stat.)+2.0-1.5(syst.)+-0.5(lumi.) pb, which is consistent with the standard model prediction. The top quark mass of 174.0+-2.2(stat.)+-4.8(syst.) GeV/c^2 is derived from a likelihood fit incorporating reconstructed mass distributions representative of signal and background.
Total cross section measurement. The second DSYS error is the uncertainty on the luminosity.
We present a measurement of the ttbar pair production cross section in ppbar collisions at sqrt(s) = 1.96 TeV utilizing approximately 425 pb-1 of data collected with the D0 detector. We consider decay channels containing two high pT charged leptons (either e or \mu) from leptonic decays of both top-daughter W bosons. These were gathered using four sets of selection criteria, three of which required that a pair of fully identified leptons (i.e., e\mu, ee, or \mu\mu) be found. The fourth approach imposed less restrictive criteria on one of the lepton candidates and required that at least one hadronic jet in each event be tagged as containing a b quark. For a top quark mass of 175 GeV, the measured cross section is 7.4 +/-1.4(stat} +/- 1.0(syst) pb.
TOP TOPBAR production cross section for top quark mass 175 GeV.
TOP TOPBAR production cross section for the current Tevatron average top quark mass 170.9 GeV.. Error contains both statistics and systematics.
Using the CLEO III detector, we measure absolute cross sections for e+e- --> hadrons at seven center-of-mass energies between 6.964 and 10.538 GeV. The values of R, the ratio of hadronic and muon pair production cross sections, are determined within 2% total r.m.s. uncertainty.
Measured values of R as a function of CM energy. The first DSYS error is the correlated uncertainty and the second is the uncorrelated.
Inclusive beauty-quark production in two-photon collisions has been measured at LEP using an integrated luminosity of 698 pb-1 collected by the ALEPH detector with sqrt(s) between 130 and 209 GeV. The b quarks were identified using lifetime information. The cross section is found to be sigma(e+ e- --> e+ e- b \bar{b} X) = (5.4 +/- 0.8 (stat) +/- 0.8 (syst)) pb which is consistent with Next-to-Leading Order QCD.
Cross section for the process E+ E- --> E+ E- BQUARK BQUARKBAR X.
We present a measurement of the top quark pair production cross section in ppbar collisions at sqrt(s)=1.96 TeV utilizing 425 pb-1 of data collected with the D0 detector at the Fermilab Tevatron Collider. We consider the final state of the top quark pair containing one high-pT electron or muon and at least four jets. We exploit specific kinematic features of ttbar events to extract the cross section. For a top quark mass of 175 GeV, we measure sigma_ttbar = 6.4 +1.3-1.2(stat} +/- 0.7(syst)+/- 0.4(lum) pb in good agreement with the standard model prediction.
TOP TOPBAR production cross section.
Differential cross sections for the reaction $\gamma p \to p \pi^0$ have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.675 to 2.875 GeV. The results reported here possess greater accuracy in the absolute normalization than previous measurements. They disagree with recent CB-ELSA measurements for the process at forward scattering angles. Agreement with the SAID and MAID fits is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been extended to 3 GeV. Resonance couplings have been extracted and compared to previous determinations.
Differential cross section for indicent photon energy 675 MeV.
Differential cross section for indicent photon energy 725 MeV.
Differential cross section for indicent photon energy 775 MeV.
We present a study of eegamma and mumugamma events using over 1 fb-1 of data collected with the D0 detector at the Fermilab Tevatron ppbar Collider at sqrt(s) = 1.96 TeV. Having observed 453 (515) candidates in the eegamma (mumugamma) final state, we measure the Zgamma production cross section for a photon with transverse energy ET > 7 GeV, separation between the photon and leptons Delta R(lgamma} > 0.7, and invariant mass of the di-lepton pair M(ll) > 30 GeV, to be 4.96 +/- 0.30(stat. + syst.) +/- 0.30(lumi.) pb, in agreement with the standard model prediction of 4.74 +/- 0.22 pb. This is the most precise Zgamma cross section measurement at a hadron collider. We set limits on anomalous trilinear Zgammagamma and ZZgamma gauge boson couplings of -0.085 < h(30)^(gamma) < 0.084, -0.0053 < h(40)^(gamma) < 0.0054 and -0.083 < h(30)^(Z) < 0.082, -0.0053 < h(40)^(Z) < 0.0054 at the 95% C.L. for the form-factor scale Lambda = 1.2 TeV.
Measured cross section for Z0 GAMMA production. Error contains both statistics and systematics (excluding luminosity uncertainty).
Inclusive jet production (e+e- -> e+e- +jet+X) is studied in collisions of quasi-real photons radiated by the LEP beams at e+e- centre-of-mass energies sqrt see from 189 to 209 GeV. Jets are reconstructed using the kp jet algorithm. The inclusive differential cross-section is measured as a function of the jet transverse momentum, ptjet, in the range 5 <ptjet < 40 GeV for pseudo-rapidities, etaj, in the range -1.5 < etaj < 1.5. The results are compared to predictions of perturbative QCD in next-to-leading order in the strong coupling constant.
Inclusive jet cross section for the absolute jet pseudorapidity < 1.0.
Inclusive jet cross section for the absolute jet pseudorapidity < 1.5.
We have measured the polarizations of J/ψ and ψ(2S) mesons as functions of their transverse momentum pT when they are produced promptly in the rapidity range |y|<0.6 with pT≥5 GeV/c. The analysis is performed using a data sample with an integrated luminosity of about 800 pb−1 collected by the CDF II detector. For both vector mesons, we find that the polarizations become increasingly longitudinal as pT increases from 5 to 30 GeV/c. These results are compared to the predictions of nonrelativistic quantum chromodynamics and other contemporary models. The effective polarizations of J/ψ and ψ(2S) mesons from B-hadron decays are also reported.
Polarization parameter ALPHA for J/PSI production.
Polarization parameter ALPHA for PSI(2S) production.