The production of the f 0 (1270) has been studied in the reaction π − p → π + π − n at 12 and 15 GeV/ c in the momentum transfer range 0.02 to 0.80 GeV 2 . Differential and total cross sections for the reaction π − p → f 0 n have been determined. The f 0 decay density matrix elements have been evaluated requiring all the matrix eigenvalues to be non-negative. The relative unnatural and natural parity exchange contributions to the f 0 production have been studied. The results are compared with a Regge exchange model formulated in terms of the pion and A 2 exchanges including cut contributions.
No description provided.
No description provided.
No description provided.
Differential cross sections and polarizations have been measured for the backward peaks in the reactions π − p →Λ K 0 and π − p →Λ K ∗ (890) at 8 GeV/c. The experiment was performed with a liquid hydrogen target at the ω spectrometer. The cross sections for u′>−2 ( GeV /c) 2 are 0.27 ± 0.03 μ b for π − p →Λ+ K 0 and 0.55±0.07 μ b for π − p →Λ K ∗0 . Large positive Λ polarization was observed in both reactions for u ′>−0.5 (GeV/ c ) 2 . The dominant production mechanism was found to be unnatural baryon exchange.
Axis error includes +- 0.0/0.0 contribution (?////).
Axis error includes +- 0.0/0.0 contribution (?////).
No description provided.
Inclusive spectra are presented for π± production in 100-GeV/cp¯p interactions. The rapidity distribution for the difference (p¯p−pp) approximately scales as the difference in total cross sections in the fragmentation region between 12 and 100 GeV/c and exhibits an approximate s−12dependence in the central region.
No description provided.
No description provided.
The differential elastic p−p scattering cross section was measured at 6 GeV/c at the Argonne Zero Gradient Synchrotron in the range p⊥2 = 0.6−1.0 (GeV/c)2 using a 65%-polarized target and a 75%-polarized extracted beam of intensity 3 × 109 protons/pulse. We simultaneously measured the polarization of the recoil proton with a well-calibrated carbon-target polarimeter. All three polarizations were measured perpendicular to the horizontal scattering plane. Our results indicate that P and T invariance are both obeyed to good precision even at large p⊥2. Parity invariance implies that the eight single-flip transversity cross sections are zero, so our data give the relative magnitudes of the eight remaining pure spin cross sections where all spins are measured. We find that the double-flip transversity cross sections are nonzero.
No description provided.
Single- and double-pion inclusive spectra are presented for 100-GeV/c p¯p interactions and compared with related pp data. Double-fragmentation distributions are shown to be understood within a Mueller-Regge framework as a product of single-fragmentation distributions. Consideration of pp and p¯p−pp distributions shows factorization to hold in Pomeron and in Reggeon exchanges independently.
No description provided.
The polarization parameter P for the reactions p p → π − π + and p p → K − K + has been measured over essentially the full angular range at ll laboratory momenta between 1.0 and 2.2. GeV/ c , using a proton target polarized perpendicular to the scattering plane. The angles and momenta of both final state particles were determined from wire spark chambers, using the deflection caused by the polarized target magnet. Between 1000 and 5300 π − π + events, and 140 and 1300 K − K + events, were measured at each momentum. Differential cross sections for p p → π − π + were obtained. These are in excellent agreement with previous results. The polarization parameter for both channels is very close to +1 over much of the angular range. Legendre polynomial fits to the data are presented.
THE DIFFERENTIAL CROSS SECTIONS IN THIS EXPERIMENT AGREE WITH THE ONES FROM THE AUTHORS' EARLIER EXPERIMENT (E. EISENHANDLER ET AL., NP B96, 109(1975)) USING A LIQUID HYDROGEN TARGET, THOUGH THEY DO NOT CONSIDER THE PRESENT ONES QUITE AS RELIABLE.
No description provided.
No description provided.
We measured the cross section for proton-proton elastic scattering at 11.75 GeV/c using the Zero Gradient Synchrotron 52% polarized proton beam and a 60% polarized proton target. We measured dσdt(ij) in the ↑↑, ↓↓, and ↑↓ initial spin states perpendicular to the scattering plane in the range P⊥2=2.0−3.6 (GeV/c)2. We found that the asymmetry parameter A decreases smoothly with increasing P⊥2 in this range, and that the spin-spin correlation parameter Cnn may have a minimum near P⊥2=3 (GeV/c)2.
No description provided.
Inclusive and semi-inclusive $ρ^0$ production in 100-GeV/c $\bar{p}p$ interactions has been studied as a function of c.m. rapidity and transverse momentum. Cross sections are compared with those for $\bar{p}p$ interactions at other energies, as well as pp and π±p interactions, over the range ∼2 < $p_{lab} < 200$ GeV/c. A measurement of the $f^0$ production cross section has been made. Calculations of the contribution from $\rho^0$ decay to prompt lepton production are presented.
No description provided.
Results are presented on the inclusive reactions p p → K 0 X , p p → Λ X and p p → Λ X at an incident antiproton momentum of 12 GeV/ c in BEBC. The cross sections are studied as functions of the Feynman scaling variable x , the rapidity, the transverse momentum of the V 0 and the missing mass squared. The dependence of the Λ and Λ polarization on x are also studied. Comparisons with proton-proton data at 12 GeV/ c are also made. Finally, events with two detected V 0 are analyzed in order to study correlations arising from the production of two strange neutral particles.
No description provided.
No description provided.
No description provided.
Proton-proton elastic scattering has been measured in the region 4.9<|t|<12.1 GeV2 at a beam momentum of 201 GeV/c. If the form exp(At) is fitted to the data, the exponent A gradually changes from 1.5 to 0.9 GeV−2 over our t range. The data are consistent with the form exp(−6.6p⊥). A comparison with intersecting storage ring results shows that in this kinematical region the slopes are about the same, but dσdt at fixed t is still dropping with energy.
7904 ELASTIC EVENTS.
1030 ELASTIC EVENTS.