The inclusive jet differential cross section has been measured for jet transverse energies, $E_T$, from 15 to 440 GeV, in the pseudorapidity region 0.1$\leq | \eta| \leq $0.7. The results are based on 19.5 pb$~{-1}$ of data collected by the CDF collaboration at the Fermilab Tevatron collider. The data are compared with QCD predictions for various sets of parton distribution functions. The cross section for jets with $E_T>200$\ GeV is significantly higher than current predictions based on O($\alpha_s~3$) perturbative QCD calculations. Various possible explanations for the high-$E_T$\ excess are discussed.
No description provided.
Inclusive jet differential cross sections for the reaction ep → jet + X at Q 2 below 4 GeV 2 have been measured with the ZEUS detector at HERA using an integrated luminosity of 0.55 pb −1 . These cross sections are given in the kinematic region 0.2 < y < 0.85, for jet pseudorapidities in the ep -laboratory range −1 < η jet < 2 and refer to jets at the hadron level with a cone radius of one unit in the η - θ plane. These results correspond to quasi-real photoproduction at centre-of-mass energies in the range 130–270 GeV and, approximately, for jet pseudorapidities in the interval −3 < η jet ( λp CMS) < 0. These measurements cover a new kinematic regime of the partonic structure of the photon, at typical scales up to ∼300 GeV 2 and photon fractional momenta down to x γ ∼ 10 −2 . Leading logarithm parton shower Monte Carlo calculations, which include both resolved and direct processes and use the predictions of currently available parametrisations of the photon parton distributions, describe in general the shape and magnitude of the measured η jet and E t jet distributions.
Second systematic error is uncertainty in the ET scale.
Second systematic error is uncertainty in the ET scale.
Second systematic error is uncertainty in the ET scale.
Measurements of the global transverse energy distributions dσ / dE T and dE T / dη using the new AGS beam of 197 Au at 11.6 A GeV/ c on a Au target, as well as a beam of 28 Si at 14.6 A GeV/ c on Al and Au targets, are presented for a leadglass detector with acceptance 1.3 ≤ η ≤ 2.4 and 0 ≤ φ < 2 π . The dσ / dE T spectra are observed to have different shapes for the different systems and simple energy rescaling does not account for the projectile dependence. The Au+Au dσ / dE T spectrum is satisfactorily constructed from the upper edge of Si+Au by the geometric Wounded Projectile Nucleon Model after applying a correction for the beam energy.
Incident energy is 14.6 GeV/nucleon.
Incident energy is 14.6 GeV/nucleon.
Incident energy is 11.6 GeV/nucleon.
We present stdies of events triggered on two high-pT jets, produced inpp collisions at the CERN Intersecting Storage Rings (ISR) at\(\sqrt s \)=63 GeV, using a large solid angle calorimeter. The cross-section for producing two jets is measured in the dijet mass range 17–50 GeV/c2. A high-statistics sample of dijet events, where each jet has transverse energy above 10 GeV, is used to study the structure of jets and the associated event. We find the longitudinal fragmentation function to be similar to that of jets emerging frome+e− collisions but considerably harder than that observed at the Super Proton Synchrotron (SPS)\(p\bar p\) Collider. A steepening of the fragmentation function is observed when increasing the jet energy. Studies of the charge distribution in jets show that these predominantly originate from fragmenting valence quarks. The transverse energy and particle flows are presented as functions of the azimuthal distance from the jet axis.
No description provided.
No description provided.
FRAGMENTATION FUNCTION FOR ET(JET) > 10 GEV.
Events with a large transverse energy in a calorimeter with full azimuthal coverage and | y | < 0.9 have been investigated in pp collisions at √ s = 30, 45, and 63 GeV. A striking change in the event structure, corresponding to a clear emergence of high- p T jets, is observed at √ s = 63 and 45 GeV in the region between 25 and 35 GeV in transverse energy. At √ s = 30 GeV, the data extend to E T ∼ 20 GeV, but no such change in the event structure is observed.
No description provided.
No description provided.
No description provided.