We have measured the polarization parameter for proton-proton elastic scattering at p0 = 6 GeV/c for |t|<0.5 (GeV/c)2 using the polarized proton beam at the Argonne Zero Gradient Synchrotron. These data, together with all previous measurements in this t region, are well fitted by the empirical relation P = (0.481±0.010)(−t)12exp(2.291±0.085)t.
No description provided.
Proton polarization in γd→pn has been measured at c.m. angle around 90° and photon energies from 325 to 725 MeV. The polarization increases sharply with the photon energy, reaching a high maximum of (-80±8)% around 500-550 MeV. Such a high polarization with a sharp energy dependence seems to indicate a new effect in the dibaryon system.
No description provided.
A polarized neutron target was used at the Bonn 2.5 GeV Synchrotron to measure the target asymmetry for the reaction γ n↑→ π − p at a fixed photon energy of 700 MeV and pion c.m. angles between 50° and 140°. The pions were detected in a large aperture magnetic spectrometer. The data show a structure which is quite different from the distribution previously measured for the reaction γ p↑→ π + n.
No description provided.
Polarization in π − p elastic scattering, with emphasis over the backward region, has been measured at 2.93 and 3.25 GeV/ c . We observe large changes in polarization compared with existing data above and below these energies. Our data may be useful in determining the properties of resonances and in understanding baryon exchanges.
THESE DATA, TOGETHER WITH THE FORWARD SCATTERING POLARIZATION MEASUREMENTS, ARE TABULATED IN THE RECORD OF P. AUER ET AL., PRL 37, 83 (1976).
At the Bonn 2.5 GeV electron synchrotron the angular distribution of the target asymmetry T = (σ↑ − σ↓) (σ↑ + σ↓) for the reaction γp↑ → π + n was measured at a mean photon energy of 700 MeV and pion CM-angles from 50° to 155°. The combination of a 3 He-cryostat, polarizing the free protons in the target up to 65%, with a large acceptance magnet for pion detection led to statistical errors of the target asymmetry comparable with those of cross section measurements.
No description provided.
At the Bonn 2.5.GeV electron synchrotron the target asymmetry for the photoproduction of positive pions has been measured. Data were taken at photon energies between 0.7 and 2.2 GeV and a pion CM-angle of 65°.
Axis error includes +- 0.0/0.0 contribution (?////).
No description provided.
The polarized target asymmetry in the reaction γp→π°p has been measured at c.m. angles around 100° for photon energies between 0.4 and 1.0 GeV by detecting both the recoil proton and the π°. The result is compared with recent analyses.
No description provided.
The polarized target asymmetry for γ + p → π + + n was measured at c.m. angles around 130° for the energy range between 0.3 and 1.0 GeV. A magnetic spectrometer system was used to detect π + mesons from the polarized butanol target. The data show two prominent positive peaks at 0.4 and 0.8 GeV and a deep minimum at 0.6 GeV. These features are well reproduced by the phenomenological analysis made by us.
No description provided.
The angular dependence of the asymmetry for negative-pion photoproduction on neutrons by linearly polarized photons has been measured for photon energies 260, 300, 350, 400, 450, and 500 MeV at center-of-mass angles 60°, 75°, 90°, 150°, and 120°. The results are compared with theoretical models of low-energy single-pion photoproduction. The observed asymmetry below 400 MeV shows good agreement with predictions of dispersion-theoretical models by Berends, Donnachie, and Weaver and by Schwela. The asymmetry values in the 400-500 MeV energy region suggest that smaller M1− amplitude is more favorable.
No description provided.
No description provided.
No description provided.
The polarization parameter P(t) for the reaction π−p→π0n has been measured at 3.5 and 5.0 GeV/c over the range 0.2<~−t<~1.8 (GeV/c)2. The two γ rays from the π0 decay were detected in a large lead-glass hodoscope. The results agree with the positive polarization values found in earlier Argonne National Laboratory data at −t<0.35 (GeV/c)2. P(t) drops to a small value near t=−0.6 (GeV/c)2 and remains the same out to t=−1.8 (GeV/c)2.
DATA POINTS MEASURED FROM SMALL GRAPH.