The cross section for $e^+ e^- \to \pi^+ \pi^- J/\psi$ between 3.8 GeV and 5.5 GeV is measured with a 967 fb$^{-1}$ data sample collected by the Belle detector at or near the $\Upsilon(nS)$ ($n = 1,\ 2,\ ...,\ 5$) resonances. The Y(4260) state is observed, and its resonance parameters are determined. In addition, an excess of $\pi^+ \pi^- J/\psi$ production around 4 GeV is observed. This feature can be described by a Breit-Wigner parameterization with properties that are consistent with the Y(4008) state that was previously reported by Belle. In a study of $Y(4260) \to \pi^+ \pi^- J/\psi$ decays, a structure is observed in the $M(\pi^\pm\jpsi)$ mass spectrum with $5.2\sigma$ significance, with mass $M=(3894.5\pm 6.6\pm 4.5) {\rm MeV}/c^2$ and width $\Gamma=(63\pm 24\pm 26)$ MeV/$c^{2}$, where the errors are statistical and systematic, respectively. This structure can be interpreted as a new charged charmonium-like state.
Measured cross section with statistical errors only.
The 132 pbt - 1 of data collected by ALEPH from 1991 to 1994 have been used to analyze η and ω production in τ decays. The following branching fractions have been measured: \(B\left( {{\tau ^ - } \to {\nu _\tau }\omega {h^ - }} \right) = \left( {1.91 \pm 0.07 \pm 0.06} \right) \times {10^{ - 2}},\)\(B\left( {{\tau ^ - } \to {\nu _\tau }\omega {h^ - }{\pi ^0}} \right) = \left( {4.3 \pm 0.6 \pm 0.5} \right) \times {10^{ - 3}},\)\(B\left( {{\tau ^ - } \to {\nu _\tau }\eta {K^ - }} \right) = \left( {2.9_{ - 1.2}^{ + 1.3} \pm 0.7} \right) \times {10^{ - 4}},\)\(B\left( {{\tau ^ - } \to {\nu _\tau }\eta {h^ - }{\pi ^0}} \right) = \left( {1.8 \pm 0.4 \pm 0.2} \right) \times {10^{ - 3}}\) and the 95% C.L. limit B(τ− → ντηπt -) < 6.2 × 10t - 4 has been obtained. The ωπt- and ηπt -π0 rates and dynamics are found in agreement with the predictions made from e+e∼ - annihilation data with the help of isospin invariance (CVC).
$\pi^+\pi^-\pi^0$ mass distribution (two entries per event) in the $\pi^{\pm}\pi^+\pi^-\pi^0$ final state for the one-photon sample. The bin size has been chosen to display the detailed shape of the $\omega$ peak. The non-resonant contribution is represented by a simple polynomial. Non-$\tau$ background has been subtracted. The error has been set to zero if it is smaller than the point size.
$\pi^+\pi^-\pi^0$ mass distributions (two entries per event) in the $\pi^{\pm}\pi^+\pi^-\pi^0$ final state for the two-photon sample. The bin size has been chosen to display the detailed shape of the $\omega$ peak. The non-resonant contribution is represented by a simple polynomial. Non-$\tau$ background has been subtracted. The error has been set to zero if it is smaller than the point size.
Background-subtracted $\omega\pi$ mass spectrum for the data presented here, plotted as black dots. The error has been set to zero if it is smaller than the point size.
The global topologies of inclusive three-- and four--jet events produced in $\pp$ interactions are described. The three-- and four--jet events are selected from data recorded by the D\O\ detector at the Tevatron Collider operating at a center--of--mass energy of $\sqrt{s} = 1800$ GeV. The measured, normalized distributions of various topological variables are compared with parton--level predictions of tree--level QCD calculations. The parton--level QCD calculations are found to be in good agreement with the data. The studies also show that the topological distributions of the different subprocesses involving different numbers of quarks are very similar and reproduce the measured distributions well. The parton shower Monte Carlo generators provide a less satisfactory description of the topologies of the three-- and four--jet events.
The estimated systematic uncertainty is 6 PCT.
The estimated systematic uncertainty is 6 PCT.
The estimated systematic uncertainty is 6 PCT.
From a sample of about 75000 τ decays identified with the ALEPH detector, K 0 production in 1-prong hadronic decays is investigated by tagging the K L 0 component in a hadronic calorimeter. Results are given for the final states ν τ h − K 0 and ν τ h − π 0 K 0 where the h − is separated into π and K contributions by means of the dE / dx measurement in in the central detector. The resulting branching ratios are: ( Bτ → ν τ π − K 0 ) = (0.88±0.14±0.09)%, ( Bτ → ν τ K − K 0 ) = (0.29±0.12±0.03)%, ( Bτ → ν τ π − π 0 K 0 ) = (0.33±0.14±0.07)% aand ( Bτ → ν τ K − π 0 K 0 ) = (0.05±0.05±0.01)%. The K ∗ decay rate in the K 0 π channel agrees with that in the Kπ 0 mode: the combined value for the branching ratio is (Bτ → ν τ K ∗− ) = (1.45±0.13±0.11)% .
Invariant mass distribution for the $K^0\pi$ system data. The numbers have been read from the plot in the paper.
Form a sample of about 75000 τ decays measured in the ALEPH detector, 1-prong charged kaon decays are identified by the dE / dx measurement in the central detector. The resulting branching ratios for the inclusive and exclusive modes are: B ( τ → ν τ K − ≥ 0 π 0 ≥ 0 K 0 ) = (1.60±0.07±0.12)%, B ( τ → ν τ K − = (0.64±0.05±0.05)%, B ( τ → ν τ − π 0 = (0.53±0.05±0.07)% and B ( τ → ν τ K − π 0 π 0 ) = (0.04±0.03±0.02)%. Exclusive modes are corrected for measured K L 0 production. The rate for τ → ν τ K − agrees well with the prediction based on τ - μ universality.
Invariant mass distribution of the $K\pi^0$ final state, as obtained from a $dE/dx$ fit in each mass bin. The numbers have been read from the plot in the paper, with the errors simply set to zero if they are smaller than the point size.
The production dynamics of baryon-antibaryon pairs are investigated using hadronic Z 0 decays, recorded with the OPAL detector, which contain at least two identified Λ baryons. The rapidly difference for Λ Λ pairs shows the correlations expected from models with a chain-like production of baryon-antibaryon pairs. If the baryon number of a Λ is compensated by a Λ , the Λ is found with a probability of 53% in an interval of ±0.6 around the Λ rapidity. This correlation strength is weaker than predicted by the Herwig Monte Carlo and the Jetset Monte Carlo with a production chain of baryon-antibaryon, and stronger than predicted by the UCLA model. The observed rapidity correlations can be described by the Jetset Monte Carlo with a dominant production chain of baryon-meson-antibaryon, the popcorn mechanism. In addition to the short range correlations, one finds an indication of a correlation of Λ Λ pairs in opposite hemispheres if both the Λ and the Λ have large rapidities. Such long range correlations are expected if the primary quark flavours are compensated in opposite hemispheres and if these quarks are found in energetic baryons. Rates for simultaneous baryon and strangeness number compensation for Λ Λ , Ξ − Ξ + and Ξ − Λ ( Λ + Λ ) are measured and compared with different Monte Carlo models.
No description provided.
Opposite and same baryon number invariant PI P mass distribuition for additional LAMBDA(LAMBDABAR) candidates in events with one identified LAMBDA(LAMBDABAR). CT.= Data read from plot.
Opposite and same baryon number invariant PI P mass distribuition for additional LAMBDA(LAMBDABAR) candidates in events with one identified XI-(XIBAR+). CT.= Data read from plot.
Distributions are presented of event shape variables, jet roduction rates and charged particle momenta obtained from 53 000 hadronicZ decays. They are compared to the predictions of the QCD+hadronization models JETSET, ARIADNE and HERWIG, and are used to optimize several model parameters. The JETSET and ARIADNE coherent parton shower (PS) models with running αs and string fragmentation yield the best description of the data. The HERWIG parton shower model with cluster fragmentation fits the data less well. The data are in better agreement with JETSET PS than with JETSETO(αS2) matrix elements (ME) even when the renormalization scale is optimized.
Sphericity distribution.
Sphericity distribution.
Aplanarity distribution.
Resonance production in the γγ reactionse+e−→e+e+e−π0π0 ande+e−π0η has been studied with the JADE detector at PETRA. The decay widths into γγ of thef2(1270),a0(980) anda2(1320) were measured to be\(\Gamma _{\gamma \gamma } (f_2 (1270)) = 3.19 \pm 0.09_{ - 0.38}^{ + 0.22} \) Kev,Γλλ(a0(980))=0.28±0.04±0.10 KeV/BR(a0(980)→π0η) andΓλλ(a2(1320))=1.01±0.14±0.22KeV. For thef0(975) andf4(2050) upper limits of the widths were obtained,Γλλ(f0(975))<0.6 KeV, andΓλλ(f4(2050))<1.1 KeV, both at the 95% C.L. Assuming that the spin 0 background under thef2(1270) is small, thef2(1270) was found to be produced exclusively in a helicity 2 state. The helicity 0 contribution is <15% at the 95% C.L. The cross section forλλ→π0π0 in the mass range 2.0–3.5 GeV/c2 was measured for the first time. Since the cross section forλλ→π+π− is a factor ∼2 larger, ππ production in this range can be interpreted as taking place via isospin 0 production.
Cross section for ABS(COS(THETA*)) < 0.3.
Cross section under assumptions of spin 2, helicity 2 production.
Cross section under assumption of spin 0 production.
In the analysis of the reactione+e−→e+e−KS0Ks0 clear evidence for exclusive γγ→f2′ resonance production is observed. The productΓγγ ·B(f2′→K\(\bar K\)) is measured to be 0.10−0.03−0.02+0.04+0.03 keV independent of ana priori assumption on the helicity structure. Our data are consistent with a pure helicity 2 contribution and we derive an upper limit for the ratioΓγγ(0)/Γγγ. The absence of events in the mass region around 1.3 GeV clearly proves destructivef2−a2 interference and allows to measure the relative phases betweenf2,a2 andf2′. Upper limits on the production of the glueball candidate statesf2(1720) andX(2230) as well as theKS0KS0-continuum are given.
Data read from graph.
None
No description provided.
No description provided.
No description provided.