The PHENIX experiment at the Relativistic Heavy Ion Collider has measured low-mass vector-meson ($ω+ρ$ and $ϕ$) production through the dimuon decay channel at forward rapidity $(1.2<|\mbox{y}|<2.2)$ in $p$$+$$p$ and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$~GeV. The low-mass vector-meson yield and nuclear-modification factor were measured as a function of the average number of participating nucleons, $\langle N_{\rm part}\rangle$, and the transverse momentum $p_T$. These results were compared with those obtained via the kaon decay channel in a similar $p_T$ range at midrapidity. The nuclear-modification factors in both rapidity regions are consistent within the uncertainties. A comparison of the $ω+ρ$ and $J/ψ$ mesons reveals that the light and heavy flavors are consistently suppressed across both $p_T$ and ${\langle}N_{\rm part}\rangle$. In contrast, the $ϕ$ meson displays a nuclear-modification factor consistent with unity, suggesting strangeness enhancement in the medium formed.
The differential cross sections of $\omega+\rho$ mesons as a function of $p_T$ in $p+p$ collisions. The systematic uncertainties of type-A (uncorrelated) are combined with statistical uncertainties in quadrature and are labeled as stat. Type-B (correlated) systematic uncertainties are listed as sys.
The differential cross sections of $\phi$ meson as a function of $p_T$ in $p+p$ collisions. The systematic uncertainties of type-A (uncorrelated) are combined with statistical uncertainties in quadrature and are labeled as stat. Type-B (correlated) systematic uncertainties are listed as sys.
The invariant yields of $\phi$ and $\omega+\rho$ mesons as a function of $p_T$ in Au+Au collisions. The systematic uncertainties of type-A (uncorrelated) are combined with statistical uncertainties in quadrature and are labeled as stat. Type-B (correlated) systematic uncertainties are listed as sys.
The jet cross-section and jet-substructure observables in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV were measured by the PHENIX Collaboration at the Relativistic Heavy Ion Collider (RHIC). Jets are reconstructed from charged-particle tracks and electromagnetic-calorimeter clusters using the anti-$k_{t}$ algorithm with a jet radius $R=0.3$ for jets with transverse momentum within $8.0<p_T<40.0$ GeV/$c$ and pseudorapidity $|η|<0.15$. Measurements include the jet cross section, as well as distributions of SoftDrop-groomed momentum fraction ($z_g$), charged-particle transverse momentum with respect to jet axis ($j_T$), and radial distributions of charged particles within jets ($r$). Also meaureed was the distribution of $ξ=-ln(z)$, where $z$ is the fraction of the jet momentum carried by the charged particle. The measurements are compared to theoretical next-to and next-to-next-to-leading-order calculatios, PYTHIA event generator, and to other existing experimental results. Indicated from these meaurements is a lower particle multiplicity in jets at RHIC energies when compared to models. Also noted are implications for future jet measurements with sPHENIX at RHIC as well as at the future Electron-Ion Collider.
The jet differential cross section as a function of jet $p_T$. Statistical uncertainties are typically smaller than the data points while systematic uncertainties are shown with boxes. An overall normalization systematic of 7% is not included in the point-by-point systematic uncertainties.
Distribution of the SoftDrop groomed momentum fraction $z_g$ for different jet $p_T$ bins. Standard SoftDrop parameters were used ($z_{cut}<0.1$ and $\beta=0$).
$\xi$ distributions for different jet $p_T$ bins.
Partonic collectivity is one of the necessary signatures for the formation of quark-gluon plasma in high-energy nuclear collisions. Number of constituent quarks (NCQ) scaling has been observed for hadron elliptic flow $v_2$ in top energy nuclear collisions at the Relativistic Heavy Ion Collider and the LHC, and this has been theoretically suggested as strong evidence for partonic collectivity. In this Letter, a systematic analysis of $v_2$ of $π^{\pm}$, $K^{\pm}$, $K^{0}_{S}$, $p$, and $Λ$ in Au+Au collisions at ${\sqrt{s_{_{\rm{NN}}}}}$ = 3.2, 3.5, 3.9, and 4.5 GeV, with the STAR experiment at the Relativistic Heavy Ion Collider, is presented. NCQ scaling is markedly violated at 3.2 GeV, consistent with a hadronic-interaction dominated equation of state. However, as the collision energy increases, a gradual evolution to NCQ scaling is observed. This beam-energy dependence of $v_2$ for all hadrons studied provides evidence for the onset of dominant partonic interactions by ${\sqrt{s_{_{\rm{NN}}}}}$ = 4.5 GeV.
$p_{T}$ dependence of $v_{2}$ for $\pi^{+}$ in Au+Au collisions at 3 GeV
$p_{T}$ dependence of $v_{2}$ for $\pi^{+}$ in Au+Au collisions at 3.2 GeV
$p_{T}$ dependence of $v_{2}$ for $\pi^{+}$ in Au+Au collisions at 3.5 GeV
We report precision measurements on cumulants ($C_{n}$) and factorial cumulants ($\kappa_{n}$) of (net-)proton number distributions up to fourth-order in Au+Au collisions from phase II of the Beam Energy Scan program at RHIC. (Anti-)protons are selected at midrapidity ($|y|<0.5$) within a transverse momentum range of $0.4 < p_T < 2.0$ GeV/$c$. The collision energy and centrality dependence of these cumulants are studied over center-of-mass energies $\sqrt{s_{NN}}$ = 7.7 -- 27 GeV. Relative to various non-critical-point model calculations and peripheral collision 70-80% data, the net-proton $C_4/C_2$ measurement in 0-5% collisions shows a minimum around 19.6 GeV for significance of deviation at $\sim2$--$5\sigma$. In addition, deviations from non-critical baselines around the same collision energy region are also seen in proton factorial cumulant ratios, especially in $\kappa_2/\kappa_1$ and $\kappa_3/\kappa_1$. Dynamical model calculations including a critical point are called for in order to understand these precision measurements.
Reference multiplicity distributions (RefMult3 and RefMult3X) for Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV along with MC Glauber model fits.
Collision centrality dependence of net-proton cumulants in Au+Au collisions for $\sqrt{s_{NN}}$ = 7.7 - 27 GeV obtained with RefMult3 and RefMult3X centrality definition.
Collision energy dependence of net-proton cumulant ratios and proton factorial cumulant ratios in Au+Au collisions from $\sqrt{s_{NN}}$ = 7.7 - 200 GeV for 0-5$\%$ and 70-80$\%$ centrality. Data from $\sqrt{s_{NN}}$ = 7.7 - 27 GeV are from BES-II (obtained with RefMult3X except 27 GeV where RefMult3 is used). Data from $\sqrt{s_{NN}}$ = 39 - 200 GeV are from BES-I (RefMult3).
The mass of the top quark is measured using top-antitop-quark pair events with high transverse momentum top quarks. The dataset, collected with the ATLAS detector in proton--proton collisions at $\sqrt{s}=13$ TeV delivered by the Large Hadron Collider, corresponds to an integrated luminosity of 140 fb$^{-1}$. The analysis targets events in the lepton-plus-jets decay channel, with an electron or muon from a semi-leptonically decaying top quark and a hadronically decaying top quark that is sufficiently energetic to be reconstructed as a single large-radius jet. The mean of the invariant mass of the reconstructed large-radius jet provides the sensitivity to the top quark mass and is simultaneously fitted with two additional observables to reduce the impact of the systematic uncertainties. The top quark mass is measured to be $m_t = 172.95 \pm 0.53$ GeV, which is the most precise ATLAS measurement from a single channel.
Values and uncertainties for the parameters of interest in the profile likelihood fit to $\overline{m_J}$, $m_{jj}$, and $m_{tj}$ using data. The parameters of interest are the top quark mass, $m_t$, and the ratio of the measured cross-section to the Standard Model expectation of the $t\bar{t}$ cross-section, $\mu$.
Post-fit central values and uncertaintes for the nuisance parameters (including MC stat uncertainty terms) used in the profile likelihood fit to $\overline{m_J}$, $m_{jj}$, and $m_{tj}$ using data.
Covariance matrix for the profile likelihood fit to $\overline{m_J}$, $m_{jj}$, and $m_{tj}$ using data.
Hard-scattered partons ejected from high-energy proton-proton collisions undergo parton shower and hadronization, resulting in collimated collections of particles that are clustered into jets. A substructure observable that highlights the transition between the perturbative and non-perturbative regimes of jet evolution in terms of the angle between two particles is the two-point energy correlator (EEC). In this letter, the first measurement of the EEC at RHIC is presented, using data taken from 200 GeV $p$+$p$ collisions by the STAR experiment. The EEC is measured both for all the pairs of particles in jets and separately for pairs with like and opposite electric charges. These measurements demonstrate that the transition between perturbative and non-perturbative effects occurs within an angular region that is consistent with expectations of a universal hadronization regime that scales with jet momentum. Additionally, a deviation from Monte-Carlo predictions at small angles in the charge-selected sample could result from mechanics of hadronization not fully captured by current models.
Corrected distributions of the normalized EEC differential in $R_{L}$ for $R_{\rm jet}=$ 0.6, with jet transverse momentum selections 15 $< p_{\rm T, jet} <$ 20 GeV/c and 30 $< p_{\rm T, jet} <$ 50 GeV/c
Corrected distributions of the normalized EEC within jets, differential in $ \left\langle p_{\rm T,jet} \right\rangle R_{L} $ at $R_{\rm jet} =$ 0.6 for one $p_{\rm T, jet}$ selection. Each distribution is normalized to integrate to one in $R_{L}$ prior to shifting.
Corrected distributions of the normalized EEC within jets, differential in $ \left\langle p_{\rm T,jet} \right\rangle R_{L} $ at $R_{\rm jet} =$ 0.6 for one $p_{\rm T, jet}$ selection. Each distribution is normalized to integrate to one in $R_{L}$ prior to shifting.
We report measurements of $\varUpsilon(1S)$, $\varUpsilon(2S)$ and $\varUpsilon(3S)$ production in $\textit{p+p}$ collisions at $\sqrt{s}=500\:\mathrm{GeV}$ by the STAR experiment in year 2011, corresponding to an integrated luminosity $\mathcal{L}_{int}=13\:\mathrm{pb^{-1}}$. The results provide precise cross sections, transverse momentum ($p_{T}$) and rapidity ($y$) spectra, as well as cross section ratios for $p_{\mathrm{T}}<10\:\mathrm{GeV/c}$ and $|y|<1$. The dependence of the $\varUpsilon$ yield on charged particle multiplicity has also been measured, offering new insights into the mechanisms of quarkonium production. The data are compared to various theoretical models: the Color Evaporation Model (CEM) accurately describes the $\varUpsilon(1S)$ production, while the Color Glass Condensate + Non-relativistic Quantum Chromodynamics (CGC+NRQCD) model overestimates the data, particularly at low $p_{T}$. Conversely, the Color Singlet Model (CSM) underestimates the rapidity dependence. These discrepancies highlight the need for further development in understanding the production dynamics of heavy quarkonia in high-energy hadronic collisions. The trend in the multiplicity dependence is consistent with CGC/Saturation and String Percolation models or $\varUpsilon$ production happening in multiple parton interactions modeled by PYTHIA8.
The invariant mass distribution of electron pairs collected from p+p collisions at 500 GeV.
Single electron efficiencies.
Upsilon reconstruction efficiencies.
The STAR Collaboration reports precise measurements of the longitudinal double-spin asymmetry, $A_{LL}$, for dijet production with at least one jet at intermediate pseudorapidity $0.8 < η_{\rm jet} < 1.8$ in polarized proton-proton collisions at a center-of-mass energy of 200 GeV. This study explores partons scattered with a longitudinal momentum fraction ($x$) from 0.01 to 0.5, which are predominantly characterized by interactions between high-$x$ valence quarks and low-$x$ gluons. The results are in good agreement with previous measurements at 200 GeV with improved precision and are found to be consistent with the predictions of global analyses that find the gluon polarization to be positive. In contrast, the negative gluon polarization solution from the JAM Collaboration is found to be strongly disfavored.
$A_{LL}$ as a function of parton-level invariant mass for dijets with the East barrel-endcap.
$A_{LL}$ as a function of parton-level invariant mass for dijets with the West barrel-endcap.
$A_{LL}$ as a function of parton-level invariant mass for dijets with the endcap-endcap.
The momentum-differential invariant cross sections of ${\pi^{0}}$ and $\eta$ mesons are reported for pp collisions at $\sqrt{s}$ = 13 TeV at midrapidity ($|y|<0.8$). The measurement is performed in a broad transverse-momentum range of $0.2<p_{\rm T}<200$ GeV/$c$ and $0.4<p_{\rm T}<60$ GeV/$c$ for the ${\pi^{0}}$ and $\eta$, respectively, extending the $p_{\rm T}$ coverage of previous measurements. Transverse-mass-scaling violation of up to 60% at low transverse momentum has been observed, agreeing with measurements at lower collision energies. Transverse Bjorken $x$ ($x_{\rm T}$) scaling of the ${\pi^{0}}$ cross sections at LHC energies is fulfilled with a power-law exponent of $n$ = 5.01$\pm$0.05, consistent with values obtained for charged pions at similar collision energies. The data is compared to predictions from next-to-leading order perturbative QCD calculations, where the ${\pi^{0}}$ spectrum is best described using the CT18 parton distribution function and the NNFF1.0 or BDSS fragmentation function. Expectations from PYTHIA8 and EPOS LHC overestimate the spectrum for the ${\pi^{0}}$ and are not able to describe the shape and magnitude of the $\eta$ spectrum. The charged-particle multiplicity dependent ${\pi^{0}}$ and $\eta$ $p_{\rm T}$ spectra show the expected hardening with increasing multiplicity. This is demonstrated across a broad transverse-momentum range and up to events with a charged-particle multiplicity exceeding five times the mean value in minimum bias collisions. The absolute magnitude of the $\eta/\pi^{0}$ ratio shows a dependence on the charged-particle multiplicity for $p_{\rm T}<4$ GeV/$c$, qualitatively described by PYTHIA8 and EPOS LHC due to a rising contribution from feed-down of heavier particles to the ${\pi^{0}}$ spectrum.
Invariant differential cross section of the $\pi^{0}$ versus transverse momentum for pp collisions at $\sqrt{s}$ = 13 TeV.
Invariant differential cross section of the $\eta$ meson versus transverse momentum for pp collisions at $\sqrt{s}$ = 13 TeV.
The $\eta/\pi^{0}$ ratio as a function of $p_{\rm T}$ for pp collisions at $\sqrt{s}$ = 13 TeV.
Event-by-event fluctuations of the event-wise mean transverse momentum, $\langle p_{\mathrm{T}}\rangle$, of charged particles produced in proton$-$proton (pp) collisions at $\sqrt{s}$ = 5.02 TeV, Xe$-$Xe collisions at $\sqrt{s_{\mathrm{NN}}} =$ 5.44 TeV, and Pb$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}} =$ 5.0 TeV are studied using the ALICE detector based on the integral correlator $\langle\langle Δp_{\rm T}Δp_{\rm T}\rangle\rangle $. The correlator strength is found to decrease monotonically with increasing produced charged-particle multiplicity measured at midrapidity in all three systems. In Xe$-$Xe and Pb$-$Pb collisions, the multiplicity dependence of the correlator deviates significantly from a simple power-law scaling as well as from the predictions of the HIJING and AMPT models. The observed deviation from power-law scaling is expected from transverse radial flow in semicentral to central Xe$-$Xe and Pb$-$Pb collisions. In pp collisions, the correlation strength is also studied by classifying the events based on the transverse spherocity, $S_0$, of the particle production at midrapidity, used as a proxy for the presence of a pronounced back-to-back jet topology. Low-spherocity (jetty) events feature a larger correlation strength than those with high spherocity (isotropic). The strength and multiplicity dependence of jetty and isotropic events are well reproduced by calculations with the PYTHIA 8 and EPOS LHC models.
Normalized transverse momentum correlator, $\sqrt{ \langle\langle \Delta p_{{\rm T}1}\Delta p_{{\rm T}2} \rangle\rangle }$$/\langle\langle p_{\rm T} \rangle\rangle $, as a function of the charged-particle multiplicity density, $\langle{\rm d}N_{\rm ch}/{\rm d}\eta \rangle$, in pp collisions at $\sqrt{s}$ = 5.02 TeV.
Normalized transverse momentum correlator, $\sqrt{ \langle\langle \Delta p_{{\rm T}1}\Delta p_{{\rm T}2} \rangle\rangle }$$/\langle\langle p_{\rm T} \rangle\rangle $, as a function of the charged-particle multiplicity density, $\langle{\rm d}N_{\rm ch}/{\rm d}\eta \rangle$, in Pb--Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV.
Normalized transverse momentum correlator, $\sqrt{ \langle\langle \Delta p_{{\rm T}1}\Delta p_{{\rm T}2} \rangle\rangle }$$/\langle\langle p_{\rm T} \rangle\rangle $, as a function of the charged-particle multiplicity density, $\langle{\rm d}N_{\rm ch}/{\rm d}\eta \rangle$, in Xe--Xe collisions at $\sqrt{s_{\rm NN}}$ = 5.44 TeV.