The hadronic photon structure function $F_2^\gamma(x,Q^2)$ is measured from data taken with the ALEPH detector at LEP. At centre-of-mass energies between
Measured value of F2/ALPHAE at a mean Q**2 of 17.3 GeV**2.
Measured value of F2/ALPHAE at a mean Q**2 of 67.2 GeV**2.
Statistical correlation coefficients for the F2 measurements at Q**2 = 17.3 GeV**2.
We report the first observation of diffractive $J/\psi(\to \mu^+\mu^-)$ production in $\bar pp$ collisions at $\sqrt{s}$=1.8 TeV. Diffractive events are identified by their rapidity gap signature. In a sample of events with two muons of transverse momentum $p_T^{\mu}>2$ GeV/$c$ within the pseudorapidity region $|\eta|<$1.0, the ratio of diffractive to total $J/\psi$ production rates is found to be $R_{J/\psi}= [1.45\pm 0.25]%$. The ratio $R_{J/\psi}(x)$ is presented as a function of $x$-Bjorken. By combining it with our previously measured corresponding ratio $R_{jj}(x)$ for diffractive dijet production, we extract a value of $0.59\pm 0.15$ for the gluon fraction of the diffractive structure function of the proton.
Diffractive to total J/psi production ratio.
Ratio of diffractive to total J/psi rate, per unit of the fractional momentum loss of the leading (anti)proton, and as a function of x-Bjorken of the struck parton of the (anti)proton adjacent to the rapidity gap and participating in the J/psi production.
Gluon fraction of the diffractive structure function of the (anti)proton.
The structure functions of real and virtual photons are derived from cross section measurements of the reaction e^+e^ -> e^+e^- + hadrons at LEP. The reaction is studied at \sqrt{s} ~ 91 GeV with the L3 detector. One of the final state electrons is detected at a large angle relative to the beam direction, leading to Q^2 values between 40 GeV^2 and 500 GeV^2. The other final state electron is either undetected or it is detected at a four-momentum transfer squared P^2 between 1 GeV^2 and 8 GeV^2. These measurements are compared with predictions of the Quark Parton Model and other QCD based models.
Measured values of F2 for the single-tag data as a function of X for the full Q**2 range.
Measured values of F2 for the single-tag data as a function of Q**2 for different X ranges.
The effective F2 measured in double-tag events as a function of X.
values between 9.9-GeV**2 and 284-GeV**2.
Inclusive γ ∗ γ interactions to hadronic final states where one scattered electron or positron is detected in the electromagnetic calorimeters have been studied in the LEP 1 data taken by ALEPH from 1991 to 1995. The event sample has been used to measure the hadronic structure function of the photon F 2 γ in three bins with 〈 Q 2 〉 of 9.9, 20.7 and 284 GeV 2 .
The measured values of dsig/dx from the ECAL data in the Q**2 bin 35 to 3000 GeV**2 with a mean of 284 +- 49 GeV**2.
The measured values of dsig/dx from the LCAL data in the Q**2 bin 13 to 44 GeV**2 with a mean of 20.67 +- 016 GeV**2.
The measured values of dsig/dx from the LCAL data in the Q**2 bin 6 to 13 GeV**2 with a mean of 9.93 +- 0.04 GeV**2.
New measurements at a centre-of-mass energy s ≃183 GeV of the hadronic photon structure function F γ 2 ( x ) in the Q 2 interval, 9 GeV 2 ≤ Q 2 ≤30 GeV 2 , are presented. The data, collected in 1997 with the L3 detector, correspond to an integrated luminosity of 51.9 pb −1 . Combining with the data taken at a centre-of-mass energy of 91 GeV, the evolution of F γ 2 with Q 2 is measured in the Q 2 range from 1.2 GeV 2 to 30 GeV 2 . F γ 2 shows a linear growth with ln Q 2 ; the value of the slope α −1 d F γ 2 ( Q 2 )/dln Q 2 is measured in two x bins from 0.01 to 0.2 and is somewhat higher than predicted.
Measured values of F2/ALPHA as a function of x. The second systematic error (DSYS) is that due to the model dependence and is the difference between the results obtained with PHOJET and TWOGAM. The full systematic error is the quadrature sum of the two systematic errors.
The hadronic photon structure function F γ 2 is studied in the reaction e + e − →e + e − hadrons at LEP with the L3 detector. The data, collected from 1991 to 1995 at a centre-of-mass energy s ≃91 GeV, correspond to an integrated luminosity of 140 pb −1 . The photon structure function F γ 2 is measured in the Q 2 interval 1.2 GeV 2 ≤ Q 2 ≤9.0 GeV 2 and the x interval 0.002< x <0.2. F γ 2 shows a linear growth with ln Q 2 . The value of the slope α −1 d F γ 2 ( Q 2 )/dln Q 2 is measured to be 0.079±0.011±0.009.
No description provided.
No description provided.
No description provided.
The reactions e + e − → e + e − e + e − and e + e − → e + e − μ + μ − , in a single tag configuration, are studied at LEP with the L3 detector. The data set corresponds to an integrated luminosity of 93.7 pb −1 at s =91 GeV. Differential cross sections are measured for 1.4 GeV 2 ≤Q 2 ≤7.6 GeV 2 . The leptonic photon structure function F γ 2 and azimuthal correlations are measured for e + e − → e + e − μ + μ − . The related structure functions F γ A and F γ B , which originate from interference terms of the scattering amplitudes, are determined for the first time.
The systematic and statistical errors added in quadrature. F2(NAME=FA) AND F2(NAME=FB) are related structure functions FA and FB, which originate from inerference terms of the scattering amplitudes. See text for exact definition and details.