Showing 8 of 8 results
This Letter presents results from a combination of searches for Higgs boson pair production using 126$-$140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. At 95% confidence level (CL), the upper limit on the production rate is 2.9 times the standard model (SM) prediction, with an expected limit of 2.4 assuming no Higgs boson pair production. Constraints on the Higgs boson self-coupling modifier $\kappa_{\lambda}=\lambda_{HHH}/\lambda_{HHH}^\mathrm{SM}$, and the quartic $HHVV$ coupling modifier $\kappa_{2V}=g_{HHVV}/g_{HHVV}^\mathrm{SM}$, are derived individually, fixing the other parameter to its SM value. The observed 95% CL intervals are $-1.2 < \kappa_{\lambda} < 7.2$ and $0.6 < \kappa_{2V} < 1.5$, respectively, while the expected intervals are $-1.6 < \kappa_{\lambda} < 7.2$ and $0.4 < \kappa_{2V} < 1.6$ in the SM case. Constraints obtained for several interaction parameters within Higgs effective field theory are the strongest to date, offering insights into potential deviations from SM predictions.
Observed and expected 95% CL upper limits on the signal strength for inclusive ggF HH and VBF HH production from the bb̄τ<sup>+</sup>τ<sup>-</sup>, bb̄γγ, bb̄bb̄, multilepton and bb̄ℓℓ+E<sub>T</sub><sup>miss</sup> decay channels, and their statistical combination. The predicted SM cross-section assumes m<sub>H</sub> = 125 GeV. The expected limit, along with its associated ±1σ and ±2σ bands, is calculated for the assumption of no HH production and with all NPs profiled to the observed data.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for $b\bar{b}b\bar{b}$.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for $b\bar{b}\tau\tau$.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for $b\bar{b}\gamma\gamma$.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for $b\bar{b}\ell\ell+E_\text{T}^{\text{miss}}$.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for Multilepton.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for combination.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_{2V}$ parameter for $b\bar{b}b\bar{b}$.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_{2V}$ parameter for $b\bar{b}\tau\tau$.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_{2V}$ parameter for $b\bar{b}\gamma\gamma$.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_{2V}$ parameter for $b\bar{b}\ell\ell+E_\text{T}^{\text{miss}}$.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_{2V}$ parameter for Multilepton.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_{2V}$ parameter for combination.
Observed and expected 95% CL upper limits on the signal strength for the inclusive ggF HH production from the bb̄τ<sup>+</sup>τ<sup>-</sup>, bb̄γγ, bb̄bb̄, multilepton and bb̄ℓℓ+E<sub>T</sub><sup>miss</sup> decay channels, and their statistical combination. When deriving the limit on μ<sub>ggF</sub><sup>HH</sup> (μ<sub>VBF</sub><sup>HH</sup>), the VBF (ggF) HH production cross-section is fixed to the SM predicted value for m<sub>H</sub>=125 GeV. The expected limit, along with the ±1σ and ±2σ bands, is calculated under the assumption of no HH process and with all NPs profiled to the observed data.
Observed and expected 95% CL upper limits on the signal strength for the VBF HH production from the bb̄τ<sup>+</sup>τ<sup>-</sup>, bb̄γγ, bb̄bb̄, multilepton and bb̄ℓℓ+E<sub>T</sub><sup>miss</sup> decay channels, and their statistical combination. When deriving the limit on μ<sub>ggF</sub><sup>HH</sup> (μ<sub>VBF</sub><sup>HH</sup>), the VBF (ggF) HH production cross-section is fixed to the SM predicted value for m<sub>H</sub>=125 GeV. The expected limit, along with the ±1σ and ±2σ bands, is calculated under the assumption of no HH process and with all NPs profiled to the observed data.
Observed and expected upper limits at 95% CL on the inclusive ggF and VBF HH production cross-section from the bb̄τ<sup>+</sup>τ<sup>-</sup>, bb̄γγ, bb̄bb̄, multilepton and bb̄ℓℓ+E<sub>T</sub><sup>miss</sup> decay channels, and their statistical combination. The Higgs boson mass is set to 125 GeV when deriving the predicted SM cross-section (red band). The expected limits, along with the ±1σ and ±2σ bands, are calculated under the assumption of no Higgs boson pair production and with all NPs profiled to the observed data.
Observed value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for $b\bar{b}b\bar{b}$.
Observed value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for $b\bar{b}\tau\tau$.
Observed value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for $b\bar{b}\gamma\gamma$.
Observed value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for $b\bar{b}\ell\ell+E_\text{T}^{\text{miss}}$.
Observed value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for Multilepton.
Observed value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for combination.
Observed value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_{2V}$ parameter for $b\bar{b}b\bar{b}$.
Observed value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_{2V}$ parameter for $b\bar{b}\tau\tau$.
Observed value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_{2V}$ parameter for $b\bar{b}\gamma\gamma$.
Observed value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_{2V}$ parameter for $b\bar{b}\ell\ell+E_\text{T}^{\text{miss}}$.
Observed value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_{2V}$ parameter for Multilepton.
Observed value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_{2V}$ parameter for combination.
Observed (solid lines) and expected (dashed lines) 95% CL exclusion limits on the HH production cross-sections of (a) the inclusive ggF and VBF processes as a function of κ<sub>λ</sub>, for the bb̄γγ (purple), bb̄τ<sup>+</sup>τ<sup>-</sup> (green), multilepton (cyan), bb̄bb̄ (blue) and bb̄ℓℓ+E<sub>T</sub><sup>miss</sup> (brown) decay channels and their combination (black). The expected limits assume no HH production. The red line shows the theory prediction for the ggF and VBF HH production cross-section as a function of κ<sub>λ</sub>. The bands surrounding the red cross-section lines indicate the theoretical uncertainties on the predicted cross-section.
Observed (solid lines) and expected (dashed lines) 95% CL exclusion limits on the HH production cross-sections of the VBF process as a function of κ<sub>2V</sub>, for the bb̄γγ (purple), bb̄τ<sup>+</sup>τ<sup>-</sup> (green), multilepton (cyan), bb̄bb̄ (blue) and bb̄ℓℓ+E<sub>T</sub><sup>miss</sup> (brown) decay channels and their combination (black). The expected limits assume no VBF HH production. The ggF HH production cross-section is assumed to be as predicted by the SM. The ggF HH production cross-section is assumed to be as predicted by the SM. The red line shows the predicted VBF HH cross-section as a function of κ<sub>2V</sub>. The bands surrounding the red cross-section lines indicate the theoretical uncertainties on the predicted cross-section.
Observed value of the test statistic (-2ln$\Lambda$), as a function of the $c_{gghh}$ parameter for $b\bar{b}b\bar{b}$.
Observed value of the test statistic (-2ln$\Lambda$), as a function of the $c_{gghh}$ parameter for $b\bar{b}\tau\tau$.
Observed value of the test statistic (-2ln$\Lambda$), as a function of the $c_{gghh}$ parameter for $b\bar{b}\gamma\gamma$.
Observed value of the test statistic (-2ln$\Lambda$), as a function of the $c_{gghh}$ parameter for combination.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $c_{gghh}$ parameter for $b\bar{b}b\bar{b}$.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $c_{gghh}$ parameter for $b\bar{b}\tau\tau$.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $c_{gghh}$ parameter for $b\bar{b}\gamma\gamma$.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $c_{gghh}$ parameter for combination.
Observed value of the test statistic (-2ln$\Lambda$), as a function of the $c_{tthh}$ parameter for $b\bar{b}b\bar{b}$.
Observed value of the test statistic (-2ln$\Lambda$), as a function of the $c_{tthh}$ parameter for $b\bar{b}\tau\tau$.
Observed value of the test statistic (-2ln$\Lambda$), as a function of the $c_{tthh}$ parameter for $b\bar{b}\gamma\gamma$.
Observed value of the test statistic (-2ln$\Lambda$), as a function of the $c_{tthh}$ parameter for combination.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $c_{tthh}$ parameter for $b\bar{b}b\bar{b}$.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $c_{tthh}$ parameter for $b\bar{b}\tau\tau$.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $c_{tthh}$ parameter for $b\bar{b}\gamma\gamma$.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $c_{tthh}$ parameter for combination.
Observed and expected 95% CL combined upper limits on the cross-section for the SM and seven BSM HEFT benchmarks (arXiv:2304.01968 [hep-ph]) in the ggF process, describing representative signal kinematics and m<sub>HH</sub> shape features obtained by varying multiple HEFT coefficients. The expected limits from the bb̄τ<sup>+</sup>τ<sup>-</sup>, bb̄γγ and bb̄bb̄ decay channels are presented as well. Theoretical predictions, estimated using specific sets of coefficient values defined in the benchmarks, are shown as red cross dots.
A search for beyond the standard model spin-0 bosons, $\phi$, that decay into pairs of electrons, muons, or tau leptons is presented. The search targets the associated production of such bosons with a W or Z gauge boson, or a top quark-antiquark pair, and uses events with three or four charged leptons, including hadronically decaying tau leptons. The proton-proton collision data set used in the analysis was collected at the LHC from 2016 to 2018 at a center-of-mass energy of 13 TeV, and corresponds to an integrated luminosity of 138 fb$^{-1}$. The observations are consistent with the predictions from standard model processes. Upper limits are placed on the product of cross sections and branching fractions of such new particles over the mass range of 15 to 350 GeV with scalar, pseudoscalar, or Higgs-boson-like couplings, as well as on the product of coupling parameters and branching fractions. Several model-dependent exclusion limits are also presented. For a Higgs-boson-like $\phi$ model, limits are set on the mixing angle of the Higgs boson with the $\phi$ boson. For the associated production of a $\phi$ boson with a top quark-antiquark pair, limits are set on the coupling to top quarks. Finally, limits are set for the first time on a fermiophilic dilaton-like model with scalar couplings and a fermiophilic axion-like model with pseudoscalar couplings.
Cross sections for the W$\phi$, Z$\phi$, and $t\bar{t}\phi$ signal models as a function of the $\phi$ boson mass in GeV. All cross sections are inclusive of all W, Z, $t\bar{t}$ and $\phi$ decay modes.
Binned representation of the control and signal regions for the combined multilepton event selection and the combined 2016–2018 data set. The control region bins follow their definitions as given in Table 1 of the paper, and the signal region bins correspond to the channels as defined by the lepton flavor composition. The normalizations of the background samples in the control regions are described in Sections 5.1 and 5.2 of the paper. All three (four) lepton events are required to have $\mathrm{Q_{\ell}=1 (0)}$, and those satisfying any of the control region requirements are removed from the signal region bins. All subsequent selections given in Tables 2 and 3 of the paper are based on events given in the signal region bins. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the statistical uncertainties in the background prediction.
Binned representation of the control and signal regions for the combined multilepton event selection and the combined 2016–2018 data set. The control region bins follow their definitions as given in Table 1 of the paper, and the signal region bins correspond to the channels as defined by the lepton flavor composition. The normalizations of the background samples in the control regions are described in Sections 5.1 and 5.2 of the paper. All three (four) lepton events are required to have $\mathrm{Q_{\ell}=1 (0)}$, and those satisfying any of the control region requirements are removed from the signal region bins. All subsequent selections given in Tables 2 and 3 of the paper are based on events given in the signal region bins. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the statistical uncertainties in the background prediction.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $t\bar{t} \phi$ Scalar with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
The $M_{OSSF}$ spectrum for the combined 2L1T, 2L2T, 3L, 3L1T, and 4L event selection (excluding the $\mathrm{Z\gamma}$ control region) and the combined 2016-2018 data set. All three (four) lepton events are required to have $\mathrm{Q_{\ell}=1 (0)}$. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the statistical uncertainties in the background prediction.
The $M_{OSSF}$ spectrum for the combined 2L1T, 2L2T, 3L, 3L1T, and 4L event selection (excluding the $\mathrm{Z\gamma}$ control region) and the combined 2016-2018 data set. All three (four) lepton events are required to have $\mathrm{Q_{\ell}=1 (0)}$. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the statistical uncertainties in the background prediction.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $t\bar{t} \phi$ Scalar with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the low mass $W\phi($ee$)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $W\phi($ee$)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $t\bar{t} \phi$ Scalar with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the high mass $W\phi($ee$)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $W\phi($ee$)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $t\bar{t} \phi$ Pseudoscalar with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the low mass $W\phi($ee$)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $W\phi($ee$)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $t\bar{t} \phi$ Pseudoscalar with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the high mass $W\phi($ee$)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $W\phi($ee$)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $t\bar{t} \phi$ Pseudoscalar with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the low mass $Z\phi($ee$)$ SR event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $Z\phi($ee$)$ SR event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $W\phi$ Scalar with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the high mass $Z\phi($ee$)$ SR event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $Z\phi($ee$)$ SR event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $W\phi$ Scalar with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the low mass $t\bar{t}\phi($ee$)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $t\bar{t}\phi($ee$)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $W\phi$ Scalar with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the high mass $t\bar{t}\phi($ee$)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $t\bar{t}\phi($ee$)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $W\phi$ Pseudoscalar with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the low mass $t\bar{t}\phi($ee$)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $t\bar{t}\phi($ee$)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $W\phi$ Pseudoscalar with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the high mass $t\bar{t}\phi($ee$)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $t\bar{t}\phi($ee$)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $W\phi$ Pseudoscalar with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the low mass $t\bar{t}\phi($ee$)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $t\bar{t}\phi($ee$)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $W\phi$ Higgs-like with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the high mass $t\bar{t}\phi($ee$)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $t\bar{t}\phi($ee$)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $W\phi$ Higgs-like with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the low mass $W\phi(\mu\mu)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $W\phi(\mu\mu)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $W\phi$ Higgs-like with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the high mass $W\phi(\mu\mu)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $W\phi(\mu\mu)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $Z\phi$ Scalar with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the low mass $W\phi(\mu\mu)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $W\phi(\mu\mu)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $Z\phi$ Scalar with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the high mass $W\phi(\mu\mu)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $W\phi(\mu\mu)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $Z\phi$ Scalar with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the low mass $Z\phi(\mu\mu)$ SR event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $Z\phi(\mu\mu)$ SR event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $Z\phi$ Pseudoscalar with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the high mass $Z\phi(\mu\mu)$ SR event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $Z\phi(\mu\mu)$ SR event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $Z\phi$ Pseudoscalar with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the low mass $t\bar{t}\phi(\mu\mu)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $t\bar{t}\phi(\mu\mu)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $Z\phi$ Pseudoscalar with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the high mass $t\bar{t}\phi(\mu\mu)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $t\bar{t}\phi(\mu\mu)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $Z\phi$ Higgs-like with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the low mass $t\bar{t}\phi(\mu\mu)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $t\bar{t}\phi(\mu\mu)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $Z\phi$ Higgs-like with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the high mass $t\bar{t}\phi(\mu\mu)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $t\bar{t}\phi(\mu\mu)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $Z\phi$ Higgs-like with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the low mass $t\bar{t}\phi(\mu\mu)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $t\bar{t}\phi(\mu\mu)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $t\bar{t} \phi (ee)$ Scalar with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the high mass $t\bar{t}\phi(\mu\mu)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $t\bar{t}\phi(\mu\mu)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $t\bar{t} \phi (\mu\mu)$ Scalar with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the $W\phi(\tau\tau)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $W\phi(\tau\tau)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $t\bar{t} \phi (\tau\tau)$ Scalar with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the $Z\phi(\tau\tau)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $Z\phi(\tau\tau)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $t\bar{t} \phi (ee)$ Pseudoscalar with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the $W\phi(\tau\tau)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $W\phi(\tau\tau)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $t\bar{t} \phi (\mu\mu)$ Pseudoscalar with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the $Z\phi(\tau\tau)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $Z\phi(\tau\tau)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $t\bar{t} \phi (\tau\tau)$ PS with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the $W\phi(\tau\tau)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $W\phi(\tau\tau)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $t\bar{t} \phi (ee)$ Higgs-like with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the $Z\phi(\tau\tau)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $Z\phi(\tau\tau)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $t\bar{t} \phi (\mu\mu)$ Higgs-like with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $t\bar{t} \phi (\tau\tau)$ H-like with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $W\phi (ee)$ Scalar with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $W\phi (\mu\mu)$ Scalar with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR4 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR4 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $W\phi (\tau\tau)$ Scalar with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR5 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR5 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $W\phi (ee)$ Pseudoscalar with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR6 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR6 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $W\phi (\mu\mu)$ Pseudoscalar with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR7 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR7 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $W\phi (\tau\tau)$ Pseudoscalar with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with scalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with scalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $W\phi (ee)$ Higgs-like with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with pseudoscalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with pseudoscalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $W\phi (\mu\mu)$ Higgs-like with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with scalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with scalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $W\phi (\tau\tau)$ Higgs-like with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with pseudoscalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with pseudoscalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $Z\phi (ee)$ Scalar with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with scalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with scalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $Z\phi (\mu\mu)$ Scalar with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with pseudoscalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with pseudoscalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $Z\phi (\tau\tau)$ Scalar with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with scalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with scalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $Z\phi (ee)$ Pseudoscalar with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with pseudoscalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with pseudoscalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $Z\phi (\mu\mu)$ Pseudoscalar with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with scalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with scalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $Z\phi (\tau\tau)$ Pseudoscalar with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with pseudoscalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with pseudoscalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $Z\phi (ee)$ Higgs-like with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with scalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with scalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $Z\phi (\mu\mu)$ Higgs-like with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with pseudoscalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with pseudoscalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $Z\phi (\tau\tau)$ Higgs-like with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with H-like production in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with H-like production in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
Overlay of observed upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $t \bar{t} \phi$ Scalar with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding Limit on $\sigma B(ee)$, $\sigma B(\mu\mu)$ and $\sigma B(\tau\tau)$ plots.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with H-like production in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with H-like production in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
Overlay of observed upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $t \bar{t} \phi$ Pseudoscalar with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding Limit on $\sigma B(ee)$, $\sigma B(\mu\mu)$ and $\sigma B(\tau\tau)$ plots.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with H-like production in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with H-like production in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
Overlay of observed upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $W\phi$ Scalar with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding Limit on $\sigma B(ee)$, $\sigma B(\mu\mu)$ and $\sigma B(\tau\tau)$ plots.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with H-like production in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with H-like production in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
Overlay of observed upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $W\phi$ Pseudoscalar with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding Limit on $\sigma B(ee)$, $\sigma B(\mu\mu)$ and $\sigma B(\tau\tau)$ plots.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with H-like production in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with H-like production in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
Overlay of observed upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $W\phi$ Higgs-like with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding Limit on $\sigma B(ee)$, $\sigma B(\mu\mu)$ and $\sigma B(\tau\tau)$ plots.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with H-like production in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with H-like production in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
Overlay of observed upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $Z\phi$ Scalar with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding Limit on $\sigma B(ee)$, $\sigma B(\mu\mu)$ and $\sigma B(\tau\tau)$ plots.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with scalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with scalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
Overlay of observed upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $Z\phi$ Pseudoscalar with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding Limit on $\sigma B(ee)$, $\sigma B(\mu\mu)$ and $\sigma B(\tau\tau)$ plots.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with pseudoscalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with pseudoscalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
Overlay of observed upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $Z\phi$ Higgs-like with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding Limit on $\sigma B(ee)$, $\sigma B(\mu\mu)$ and $\sigma B(\tau\tau)$ plots.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with scalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with scalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
Overlay of observed upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $t \bar{t} \phi$ Scalar with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding to one flavor limit plots.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with pseudoscalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with pseudoscalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
Overlay of observed upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $t \bar{t} \phi$ Pseudoscalar with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding to one flavor limit plots.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with scalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with scalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
Overlay of observed upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $t \bar{t} \phi$ H-like with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding to one flavor limit plots.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with pseudoscalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with pseudoscalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
Overlay of observed upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $W\phi$ Scalar with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding to one flavor limit plots.
The 95% confidence level upper limits on $g^2_{tS}$ for the dilaton-like $t\bar{t} \phi$ signal model. Masses of the $\phi$ boson above 300 GeV are not probed for the dilaton-like signal model as the $\phi$ branching fraction into top quark-antiquark pairs becomes nonnegligible.
The 95% confidence level upper limits on $g^2_{tS}$ for the dilaton-like $t\bar{t} \phi$ signal model. Masses of the $\phi$ boson above 300 GeV are not probed for the dilaton-like signal model as the $\phi$ branching fraction into top quark-antiquark pairs becomes nonnegligible.
Overlay of observed upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $W\phi$ Pseudoscalar with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding to one flavor limit plots.
The 95% confidence level upper limits on $g^2_{tPS}$ for the axion-like $t\bar{t} \phi$ signal model. Masses of the $\phi$ boson above 300 GeV are not probed for the axion-like signal model as the $\phi$ branching fraction into top quark-antiquark pairs becomes nonnegligible.
The 95% confidence level upper limits on $g^2_{tPS}$ for the axion-like $t\bar{t} \phi$ signal model. Masses of the $\phi$ boson above 300 GeV are not probed for the axion-like signal model as the $\phi$ branching fraction into top quark-antiquark pairs becomes nonnegligible.
Overlay of observed upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $W\phi$ Higgs-like with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding to one flavor limit plots.
The 95% confidence level upper limits on the product of $sin^2 \theta$ and branching fraction for the H-like production of X$\phi \rightarrow$ ee. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level upper limits on the product of $sin^2 \theta$ and branching fraction for the H-like production of X$\phi \rightarrow$ ee. The vertical gray band indicates the mass region not considered in the analysis.
Overlay of observed upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $Z\phi$ Scalar with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding to one flavor limit plots.
The 95% confidence level upper limits on the product of $sin^2 \theta$ and branching fraction for the H-like production of X$\phi \rightarrow \mu\mu$. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level upper limits on the product of $sin^2 \theta$ and branching fraction for the H-like production of X$\phi \rightarrow \mu\mu$. The vertical gray band indicates the mass region not considered in the analysis.
Overlay of observed upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $Z\phi$ Pseudoscalar with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding to one flavor limit plots.
The 95% confidence level upper limits on $sin^2 \theta$ for the H-like production and decay of X$\phi$ signal model.
The 95% confidence level upper limits on $sin^2 \theta$ for the H-like production and decay of X$\phi$ signal model.
Overlay of observed upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $Z\phi$ Higgs-like with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding to one flavor limit plots.
Cross section in units of pb for the W$\phi$, Z$\phi$, and $t\bar{t}\phi$ signals as a function of the $\phi$ boson mass in GeV. All cross sections are inclusive of all W, Z, $t\bar{t}$ and $\phi$ decay modes.
Cross section in units of pb for the W$\phi$, Z$\phi$, and $t\bar{t}\phi$ signals as a function of the $\phi$ boson mass in GeV. All cross sections are inclusive of all W, Z, $t\bar{t}$ and $\phi$ decay modes.
Product of acceptance and efficiency for $t\bar{t} \phi (ee)$ Scalar signal model in each signal region of the dielectron channel with inclusive t\bar{t} decay.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tS}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $t\bar{t} \phi$ signal with scalar couplings, where $g_{tS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tS}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $t\bar{t} \phi$ signal with scalar couplings, where $g_{tS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
Product of acceptance and efficiency for $t\bar{t} \phi (\mu\mu)$ Scalar signal model in each signal region of the dimuon channel with inclusive t\bar{t} decay.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tS}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $t\bar{t} \phi$ signal with scalar couplings, where $g_{tS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tS}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $t\bar{t} \phi$ signal with scalar couplings, where $g_{tS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
Product of acceptance and efficiency for $t\bar{t} \phi (\tau\tau)$ Scalar signal model in each signal region of the ditau channel with inclusive t\bar{t} decay.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tS}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $t\bar{t} \phi$ signal with scalar couplings, where $g_{tS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tS}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $t\bar{t} \phi$ signal with scalar couplings, where $g_{tS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
Product of acceptance and efficiency for $t\bar{t} \phi (ee)$ Pseudoscalar signal model in each signal region of the dielectron channel with inclusive t\bar{t} decay.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tPS}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $t\bar{t} \phi$ signal with pseudoscalar couplings, where $g_{tPS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tPS}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $t\bar{t} \phi$ signal with pseudoscalar couplings, where $g_{tPS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
Product of acceptance and efficiency for $t\bar{t} \phi (\mu\mu)$ Pseudoscalar signal model in each signal region of the dimuon channel with inclusive t\bar{t} decay.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tPS}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $t\bar{t} \phi$ signal with pseudoscalar couplings, where $g_{tPS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tPS}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $t\bar{t} \phi$ signal with pseudoscalar couplings, where $g_{tPS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
Product of acceptance and efficiency for $t\bar{t} \phi (\tau\tau)$ PS signal model in each signal region of the ditau channel with inclusive t\bar{t} decay.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tPS}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $t\bar{t} \phi$ signal with pseudoscalar couplings, where $g_{tPS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tPS}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $t\bar{t} \phi$ signal with pseudoscalar couplings, where $g_{tPS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
Product of acceptance and efficiency for $W\phi (ee)$ Scalar signal model in each signal region of the dielectron channel with leptonic W decay.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $t\bar{t} \phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $t\bar{t} \phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
Product of acceptance and efficiency for $W\phi (\mu\mu)$ Scalar signal model in each signal region of the dimuon channel with leptonic W decay.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $t\bar{t} \phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $t\bar{t} \phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
Product of acceptance and efficiency for $W\phi (\tau\tau)$ Scalar signal model in each signal region of the ditau channel with leptonic W decay.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $t\bar{t} \phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $t\bar{t} \phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
Product of acceptance and efficiency for $W\phi (ee)$ Pseudoscalar signal model in each signal region of the dielectron channel with leptonic W decay.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $W\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $W\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
Product of acceptance and efficiency for $W\phi (\mu\mu)$ Pseudoscalar signal model in each signal region of the dimuon channel with leptonic W decay.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $W\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $W\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
Product of acceptance and efficiency for $W\phi (\tau\tau)$ Pseudoscalar signal model in each signal region of the ditau channel with leptonic W decay.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $W\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $W\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
Product of acceptance and efficiency for $W\phi (ee)$ Higgs-like signal model in each signal region of the dielectron channel with leptonic W decay.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $W\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $W\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
Product of acceptance and efficiency for $W\phi (\mu\mu)$ Higgs-like signal model in each signal region of the dimuon channel with leptonic W decay.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $W\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $W\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
Product of acceptance and efficiency for $W\phi (\tau\tau)$ Higgs-like signal model in each signal region of the ditau channel with leptonic W decay.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $W\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $W\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
Product of acceptance and efficiency for $Z\phi (ee)$ Scalar signal model in each signal region of the dielectron channel with leptonic Z decay.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $W\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $W\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
Product of acceptance and efficiency for $Z\phi (\mu\mu)$ Scalar signal model in each signal region of the dimuon channel with leptonic Z decay.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $W\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $W\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
Product of acceptance and efficiency for $Z\phi (\tau\tau)$ Scalar signal model in each signal region of the ditau channel with leptonic Z decay.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $W\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $W\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
Product of acceptance and efficiency for $Z\phi (ee)$ Pseudoscalar signal model in each signal region of the dielectron channel with leptonic Z decay.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $Z\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $Z\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
Product of acceptance and efficiency for $Z\phi (\mu\mu)$ Pseudoscalar signal model in each signal region of the dimuon channel with leptonic Z decay.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $Z\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $Z\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
Product of acceptance and efficiency for $Z\phi (\tau\tau)$ Pseudoscalar signal model in each signal region of the ditau channel with leptonic Z decay.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $Z\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $Z\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
Product of acceptance and efficiency for $Z\phi (ee)$ Higgs-like signal model in each signal region of the dielectron channel with leptonic Z decay.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $Z\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $Z\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
Product of acceptance and efficiency for $Z\phi (\mu\mu)$ Higgs-like signal model in each signal region of the dimuon channel with leptonic Z decay.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $Z\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $Z\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
Product of acceptance and efficiency for $Z\phi (\tau\tau)$ Higgs-like signal model in each signal region of the ditau channel with leptonic Z decay.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $Z\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $Z\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
Example of the signal shape paramertization for W$\phi$ signal, $\phi\rightarrow ee $. Only for illustration purpose. All signals parametrization for all coupling scenarios are provided in SignalParametrizationele.root file and README file with instructions under Additional resources.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $Z\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $Z\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
Example of the signal shape paramertization for W$\phi$ signal, $\phi\rightarrow $\mu\mu$ $. Only for illustration purpose. All signals parametrization for all coupling scenarios are provided in SignalParametrizationmu.root file and README file with instructions under Additional resources.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $Z\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $Z\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
Example of the signal shape paramertization for W$\phi$ signal, $\phi\rightarrow $\tau\tau$ $. Only for illustration purpose. All signals parametrization for all coupling scenarios are provided in SignalParametrizationtau.root file and README file with instructions under Additional resources.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $Z\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $Z\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of the mixing angle $sin^2 \theta$ and branching fraction for combined X$\phi$ signal model. Limits for Higgs-like production of $\phi$ boson in the dielectron channel. The inner (green) and the outer (yellow) bands indicate the regions containing 68 and 95%, respectively, of the distribution of limits expected under the background-only hypothesis. The vertical gray band indicates the mass region corresponding to the Z boson mass window veto. Branching fractions B($\phi \rightarrow $ ee) is arbitrary.
The 95% confidence level observed upper limits on the product of $\sigma$($t \bar{t} \phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $t \bar{t} \phi$ signal with scalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $t \bar{t} \phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\sigma$($t \bar{t} \phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $t \bar{t} \phi$ signal with scalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $t \bar{t} \phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level expected and observed upper limits on the product of the mixing angle $sin^2 \theta$ and branching fraction for combined X$\phi$ signal model. Limits for Higgs-like production of $\phi$ boson in the dimuon channel. The inner (green) and the outer (yellow) bands indicate the regions containing 68 and 95%, respectively, of the distribution of limits expected under the background-only hypothesis. The vertical gray band indicates the mass region corresponding to the Z boson mass window veto. Branching fractions B($\phi \rightarrow \mu\mu$) is arbitrary.
The 95% confidence level observed upper limits on the product of $\sigma$($t \bar{t} \phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $t \bar{t} \phi$ signal with pseudoscalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $t \bar{t} \phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\sigma$($t \bar{t} \phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $t \bar{t} \phi$ signal with pseudoscalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $t \bar{t} \phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level expected and observed upper limits on $sin^2 \theta$ where $\theta$ is mixing angle, for combined dimuon and ditau channels of X$\phi$ signal model. The inner(green) and the outer (yellow) bands indicate the regions containing 68 and 95%, respectively, of the distribution of limits expected under the background-only hypothesis.
The 95% confidence level observed upper limits on the product of $\sigma$($W\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with scalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $W\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\sigma$($W\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with scalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $W\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level expected and observed upper limits on the square of the Yukawa coupling to top quarks $g^2_{S}$ for combined dimuon and ditau channels of $t\bar{t} \phi$ signal model with dilaton-like $\phi$ boson. The inner (green) and the outer (yellow) bands indicate the regions containing 68 and 95%, respectively, of the distribution of limits expected under the background-only hypothesis.
The 95% confidence level observed upper limits on the product of $\sigma$($W\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with pseudoscalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $W\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\sigma$($W\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with pseudoscalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $W\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level expected and observed upper limits on the square of the Yukawa coupling to top quarks $g^2_{PS}$ for combined dimuon and ditau channels of $t\bar{t} \phi$ signal model with ”fermi-philic” axion-like $\phi$ boson. The inner (green) and the outer (yellow) bands indicate the regions containing 68 and 95%, respectively, of the distribution of limits expected under the background-only hypothesis.
The 95% confidence level observed upper limits on the product of $\sigma$($W\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with H-like production, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $W\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\sigma$($W\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with H-like production, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $W\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
Mass spectra $M_{ee}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The 95% confidence level observed upper limits on the product of $\sigma$($Z\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with scalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $Z\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\sigma$($Z\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with scalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $Z\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
Mass spectra $M_{ee}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The 95% confidence level observed upper limits on the product of $\sigma$($Z\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with pseudoscalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $Z\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\sigma$($Z\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with pseudoscalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $Z\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
Mass spectra Min. $M_{ee}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The 95% confidence level observed upper limits on the product of $\sigma$($Z\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with H-like production, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $Z\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\sigma$($Z\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with H-like production, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $Z\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
Mass spectra Min. $M_{ee}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The 95% confidence level observed upper limits on the product of $g^{2}_{tS}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $t \bar{t} \phi$ signal with scalar couplings, where $g_{tS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $g^{2}_{tS}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $t \bar{t} \phi$ signal with scalar couplings, where $g_{tS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
Mass spectra Min. $M_{ee}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The 95% confidence level observed upper limits on the product of $g^{2}_{tPS}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $t \bar{t} \phi$ signal with pseudoscalar couplings, where $g_{tPS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $g^{2}_{tPS}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $t \bar{t} \phi$ signal with pseudoscalar couplings, where $g_{tPS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
Mass spectra Min. $M_{ee}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The 95% confidence level observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $t \bar{t} \phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $t \bar{t} \phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
Mass spectra $M_{ee}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The 95% confidence level observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
Mass spectra $M_{ee}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The 95% confidence level observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
Mass spectra Min. $M_{ee}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The 95% confidence level observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
Mass spectra Min. $M_{ee}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The 95% confidence level observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
Mass spectra Min. $M_{ee}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The 95% confidence level observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
Mass spectra Min. $M_{ee}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The 95% confidence level observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
Mass spectra $M_{\mu\mu}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra $M_{\mu\mu}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{\mu\mu}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{\mu\mu}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{\mu\mu}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{\mu\mu}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra $M_{\mu\mu}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra $M_{\mu\mu}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{\mu\mu}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{\mu\mu}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{\mu\mu}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{\mu\mu}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{e\mu}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{e\mu}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{l\tau}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{l\tau}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{\tau\tau}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{\tau\tau}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{e\mu}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{l\tau}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{\tau\tau}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{e\mu}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{l\tau}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{\tau\tau}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{l\tau}$ or $M_{\tau\tau}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
Selected signal shapes of the $W\phi$(ee) signal for illustration purposes. All shape parametrizations for all coupling scenarios of the $X\phi$(ee) signal are provided in the SignalShapes_XPhiToEleEle.root file, and a README file with instructions is provided under Additional Resources.
Selected signal shapes of the $W\phi$(ee) signal for illustration purposes. All shape parametrizations for all coupling scenarios of the $X\phi$(ee) signal are provided in the SignalShapes_XPhiToEleEle.root file, and a README file with instructions is provided under Additional Resources.
Selected signal shapes of the $W\phi$$(\mu\mu)$ signal for illustration purposes. All shape parametrizations for all coupling scenarios of the $X\phi$$(\mu\mu)$ signal are provided in the SignalShapes_XPhiToMuMu.root file, and a README file with instructions is provided under Additional Resources.
Selected signal shapes of the $W\phi$$(\mu\mu)$ signal for illustration purposes. All shape parametrizations for all coupling scenarios of the $X\phi$$(\mu\mu)$ signal are provided in the SignalShapes_XPhiToMuMu.root file, and a README file with instructions is provided under Additional Resources.
Selected signal shapes of the $W\phi$$(\tau\tau)$ signal for illustration purposes. All shape parametrizations for all coupling scenarios of the $X\phi$$(\tau\tau)$ signal are provided in the SignalShapes_XPhiToTauTau.root file, and a README file with instructions is provided under Additional Resources.
Selected signal shapes of the $W\phi$$(\tau\tau)$ signal for illustration purposes. All shape parametrizations for all coupling scenarios of the $X\phi$$(\tau\tau)$ signal are provided in the SignalShapes_XPhiToTauTau.root file, and a README file with instructions is provided under Additional Resources.
The production of four top quarks ($\mathrm{t\bar{t}t\bar{t}}$) is studied with LHC proton-proton collision data samples collected by the CMS experiment at a center-of-mass energy of 13 TeV, and corresponding to integrated luminosities of up to 138 fb$^{-1}$. Events that have no leptons (all-hadronic), one lepton, or two opposite-sign leptons (where lepton refers only to prompt electrons or prompt muons) are considered. This is the first $\mathrm{t\bar{t}t\bar{t}}$ measurement that includes the all-hadronic final state. The observed significance of the $\mathrm{t\bar{t}t\bar{t}}$ signal in these final states of 3.9 standard deviations (1.5 expected) provides evidence for $\mathrm{t\bar{t}t\bar{t}}$ production, with a measured cross section of 36 $^{+12}_{-11}$ fb. Combined with earlier CMS results in other final states, the signal significance is 4.0 standard deviations (3.2 expected). The combination returns an observed cross section of 17 $\pm$ 4 (stat) $\pm$ 3 (syst) fb, which is consistent with the standard model prediction.
The jet multiplicity for $N_\textrm{b} \geq 4$ in the opposite-sign dilepton channel for the combined 2017--2018 dataset with dilepton decay categories combined. Here, $\textrm{t}\bar{\textrm{t}} + \geq 1 \textrm{b}$ refers to $\textrm{t}\bar{\textrm{t}}$ events with at least one additional b jet, $\textrm{t}\bar{\textrm{t}} + 0 \textrm{b}$ includes all other $\textrm{t}\bar{\textrm{t}}$ events not produced in association with a boson, and EW refers to events that contain W and Z bosons but no top quarks. The backgrounds and $\textrm{t}\bar{\textrm{t}}\textrm{t}\bar{\textrm{t}}$ signal (derived from the fit) are shown as a stacked histogram. The hatched bands correspond to the estimated total uncertainty after the fit.
The distribution of the BDT discriminants for the 2016--2018 data set for three different categories in the combined single-electron and single-muon channels. The three categories are defined by the number of resolved t tags ($N_\textrm{RT}$), b tags ($N_\textrm{b}$), and jets ($N_\textrm{j}$), selected as representative based on their sensitivity to signal. Here, $\textrm{t}\bar{\textrm{t}} + \geq 1 \textrm{b}$ refers to $\textrm{t}\bar{\textrm{t}}$ events with at least one additional b jet, while $\textrm{t}\bar{\textrm{t}} + 0 \textrm{b}$ includes all other $\textrm{t}\bar{\textrm{t}}$ events not produced in association with a boson. The TOP grouping contains single top quark production along with the other $\textrm{t}\bar{\textrm{t}}$ processes not explicitly shown, and EW refers to events that contain W and Z bosons but no top quarks. The backgrounds and $\textrm{t}\bar{\textrm{t}}\textrm{t}\bar{\textrm{t}}$ signal (derived from the fit) are shown as a stacked histogram. The hatched bands correspond to the estimated total uncertainty after the fit. While the bins are shown to be equal width, they do not correspond to equal width in BDT value.
The distribution of the BDT discriminants for the full 2016--2018 data set in the all-hadronic channel. The sample VR category shown is defined by $N_\textrm{RT}=1$, $N_\textrm{BT} \geq 1$, $H_T > 1400$ GeV. The background from QCD multijet and $\textrm{t}\bar{\textrm{t}}$ production is derived from control regions in the data. Estimates for the $\textrm{t}\bar{\textrm{t}}\textrm{t}\bar{\textrm{t}}$ signal and other backgrounds are shown using simulated samples. The hatched bands correspond to the estimated total uncertainty.
The distribution of the BDT discriminants for the full 2016--2018 data set in the all-hadronic channel. The sample VR category shown is defined by $N_\textrm{RT} \geq 2$, $H_T > 1100$ GeV. The background from QCD multijet and $\textrm{t}\bar{\textrm{t}}$ production is derived from control regions in the data. Estimates for the $\textrm{t}\bar{\textrm{t}}\textrm{t}\bar{\textrm{t}}$ signal and other backgrounds are shown using simulated samples. The hatched bands correspond to the estimated total uncertainty.
The distribution of the BDT discriminants for the full 2016--2018 data set in the all-hadronic channel. The SR category shown in this figure is defined by $N_\textrm{RT}=1$, $N_\textrm{BT} \geq 1$, $H_T > 1400$ GeV. The background from QCD multijet and $\textrm{t}\bar{\textrm{t}}$ production is derived from control regions in the data. Estimates for the $\textrm{t}\bar{\textrm{t}}\textrm{t}\bar{\textrm{t}}$ signal and other backgrounds are shown using simulated samples. The hatched bands correspond to the estimated total uncertainty after the fit.
The distribution of the BDT discriminants for the full 2016--2018 data set in the all-hadronic channel. The SR category shown in this figure is defined by $N_\textrm{RT} = 2$, $H_T > 1100$ GeV. The background from QCD multijet and $\textrm{t}\bar{\textrm{t}}$ production is derived from control regions in the data. Estimates for the $\textrm{t}\bar{\textrm{t}}\textrm{t}\bar{\textrm{t}}$ signal and other backgrounds are shown using simulated samples. The hatched bands correspond to the estimated total uncertainty after the fit.
Expected and observed significance (in standard deviations) for $\textrm{t}\bar{\textrm{t}}\textrm{t}\bar{\textrm{t}}$ production from each final state and the combination with previous CMS results (EPJC 80 (2020) 75 and JHEP 11 (2019) 082). The same-sign dilepton and multilepton (SSDL\&ML) final state results are from EPJC 80 (2020) 75.
Measured signal strength ($\mu = \sigma_{\textrm{t}\bar{\textrm{t}}\textrm{t}\bar{\textrm{t}}}/ \sigma_{\textrm{t}\bar{\textrm{t}}\textrm{t}\bar{\textrm{t}}} ^{\textrm{SM}}$), corresponding cross section (in fb), and the expected and observed significance (in standard deviations) for $\textrm{t}\bar{\textrm{t}}\textrm{t}\bar{\textrm{t}}$ production from all analysis channels. This table shows production from each analysis channel in this Letter, the combination of those channels, the results from previously published results, and the full combination of all CMS 2016-2018 results.
Constraints on the Higgs boson self-coupling are set by combining double-Higgs boson analyses in the $b\bar{b}b\bar{b}$, $b\bar{b}\tau^+\tau^-$ and $b\bar{b} \gamma \gamma$ decay channels with single-Higgs boson analyses targeting the $\gamma \gamma$, $ZZ^*$, $WW^*$, $\tau^+ \tau^-$ and $b\bar{b}$ decay channels. The data used in these analyses were recorded by the ATLAS detector at the LHC in proton$-$proton collisions at $\sqrt{s}=13$ TeV and correspond to an integrated luminosity of 126$-$139 fb$^{-1}$. The combination of the double-Higgs analyses sets an upper limit of $\mu_{HH} < 2.4$ at 95% confidence level on the double-Higgs production cross-section normalised to its Standard Model prediction. Combining the single-Higgs and double-Higgs analyses, with the assumption that new physics affects only the Higgs boson self-coupling ($\lambda_{HHH}$), values outside the interval $-0.4< \kappa_{\lambda}=(\lambda_{HHH}/\lambda_{HHH}^{\textrm{SM}})< 6.3$ are excluded at 95% confidence level. The combined single-Higgs and double-Higgs analyses provide results with fewer assumptions, by adding in the fit more coupling modifiers introduced to account for the Higgs boson interactions with the other Standard Model particles. In this relaxed scenario, the constraint becomes $-1.4 < \kappa_{\lambda} < 6.1$ at 95% CL.
Observed and expected 95% CL upper limits on the signal strength for double-Higgs production from the bbbb, bb$\tau\tau$ and bb$\gamma\gamma$ decay channels, and their statistical combination. The value $m_H$ = 125.09 GeV is assumed when deriving the predicted SM cross-section. The expected limit and the corresponding error bands are derived assuming the absence of the HH process and with all nuisance parameters profiled to the observed data.
Observed and expected 95% CL exclusion limits on the production cross-sections of the combined ggF HH and VBF HH processes as a function of $\kappa_\lambda$, for the three double-Higgs search channels and their combination. The expected limits assume no HH production. The red line shows the theory prediction for the combined ggF HH and VBF HH cross-section as a function of $\kappa_\lambda$ where all parameters and couplings are set to their SM values except for $\kappa_\lambda$. The band surrounding the red cross-section lines indicate the theoretical uncertainty of the predicted cross-section.
Observed and expected 95% CL exclusion limits on the production cross-sections of the VBF HH process as a function of $\kappa_{2V}$, for the three double-Higgs search channels and their combination. The expected limits assume no VBF HH production. The red line shows the predicted VBF HH cross-section as a function of $\kappa_{2V}$. The bands surrounding the red cross-section lines indicate the theoretical uncertainty of the predicted cross-section. The uncertainty band is smaller than the width of the plotted line.
Observed values of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for the single-Higgs and double-Higgs analyses combination, with all other coupling modifiers fixed to unity.
Observed values of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for the double-Higgs analyses, with all other coupling modifiers fixed to unity.
Observed values of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for the single-Higgs analyses, with all other coupling modifiers fixed to unity.
Observed values of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for the single-Higgs and double-Higgs combination for the generic model (free floating $\kappa_t$, $\kappa_b$, $\kappa_V$ and $\kappa_\tau$). The observed best-fit value of $\kappa_\lambda$ for the generic model is shifted slightly relative to the other models because of its correlation with the best-fit values of the $\kappa_b$, $\kappa_t$ and $\kappa_\tau$ parameters, which are slightly below, but compatible with unity.
Expected values of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for the single-Higgs and double-Higgs analyses combination derived from the combined single-Higgs and double-Higgs analyses, with all other coupling modifiers fixed to unity.
Expected values of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for the double-Higgs analyses.
Expected values of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for the single-Higgs analyses, with all other coupling modifiers fixed to unity.
Expected values of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for the single-Higgs and double-Higgs analyses for the generic model (free floating $\kappa_t$, $\kappa_b$, $\kappa_V$ and $\kappa_\tau$).
Observed constraints in the $\kappa_\lambda$–$\kappa_t$ plane from single-Higgs and double-Higgs combination. The solid lines show the 68% CL contours. The observed constraint for the single- and double-Higgs combination for $\kappa_t$ values below unity is slightly less stringent than that for the single-Higgs fit alone due to the slightly higher best-fit value for this coupling modifier.
Observed constraints in the $\kappa_\lambda$–$\kappa_t$ plane from single-Higgs and double-Higgs combination. The dashed lines show the 95% CL contours. The observed constraint for the single- and double-Higgs combination for $\kappa_t$ values below unity is slightly less stringent than that for the single-Higgs fit alone due to the slightly higher best-fit value for this coupling modifier.
Observed constraints in the $\kappa_\lambda$–$\kappa_t$ plane from double-Higgs analysis. The solid lines show the 68% CL contours. The double-Higgs contours are shown for values of $\kappa_t$ smaller than 1.2.
Observed constraints in the $\kappa_\lambda$–$\kappa_t$ plane from double-Higgs analysis. The dashed lines show the 95% CL contours. The double-Higgs contours are shown for values of $\kappa_t$ smaller than 1.2.
Observed constraints in the $\kappa_\lambda$–$\kappa_t$ plane from single-Higgs analysis. The solid lines show the 68% CL contours.
Observed constraints in the $\kappa_\lambda$–$\kappa_t$ plane from single-Higgs analysis. The dashed lines show the 95% CL contours.
Expected constraints in the $\kappa_\lambda$–$\kappa_t$ plane from single-Higgs and double-Higgs combination. The solid lines show the 68% CL contours. The double-Higgs contours are shown for values of $\kappa_t$ smaller than 1.2.
Expected constraints in the $\kappa_\lambda$–$\kappa_t$ plane from single-Higgs and double-Higgs combination. The dashed lines show the 95% CL contours. The double-Higgs contours are shown for values of $\kappa_t$ smaller than 1.2.
Expected constraints in the $\kappa_\lambda$–$\kappa_t$ plane from double-Higgs analyses. The solid lines show the 68% CL contours. The double-Higgs contours are shown for values of $\kappa_t$ smaller than 1.2.
Expected constraints in the $\kappa_\lambda$–$\kappa_t$ plane from double-Higgs analyses. The dashed lines show the 95% CL contours. The double-Higgs contours are shown for values of $\kappa_t$ smaller than 1.2.
Expected constraints in the $\kappa_\lambda$–$\kappa_t$ plane from single-Higgs analyses. The solid lines show the 68% CL contours.
Expected constraints in the $\kappa_\lambda$–$\kappa_t$ plane from single-Higgs analyses. The dashed lines show the 95% CL contours.
Observed and expected 95% CL upper limits on the sum of the ggF HH and VBF HH production cross-section from the bbbb, bb$\tau\tau$ and bb$\gamma\gamma$ decay channels, and their statistical combination. The value $m_H$=125.09 GeV is assumed when deriving the predicted SM cross section. The expected limit and the corresponding error bands are derived assuming the absence of the HH process with all nuisance parameters profiled to the observed data. The SM prediction together with its theoretical uncertainty is also shown (red vertical band).
Observed value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for the HH to bbbb analysis. All other coupling modifiers are fixed to their SM value.
Observed value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for the HH to bb$\tau\tau$ analysis. All other coupling modifiers are fixed to their SM value.
Observed value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for the HH to bb$\gamma\gamma$ analysis. All other coupling modifiers are fixed to their SM value.
Observed value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for the double-Higgs combination. All other coupling modifiers are fixed to their SM value.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for HH to bbbb analysis. All other coupling modifiers are fixed to their SM value.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for HH to bb$\tau\tau$ analysis. All other coupling modifiers are fixed to their SM value.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for HH to bb$\gamma\gamma$ analysis. All other coupling modifiers are fixed to their SM value.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for double-Higgs combination. All other coupling modifiers are fixed to their SM value.
Observed value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_{2V}$ parameter for the HH to bbbb analysis. All other coupling modifiers are fixed to their SM value.
Observed value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_{2V}$ parameter for the HH to bb$\tau\tau$ analysis. All other coupling modifiers are fixed to their SM value.
Observed value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_{2V}$ parameter for the HH to bb$\gamma\gamma$ analysis. All other coupling modifiers are fixed to their SM value.
Observed value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_{2V}$ parameter for the double-Higgs combination. All other coupling modifiers are fixed to their SM value.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_{2V}$ parameter for the HH to bbbb analysis. All other coupling modifiers are fixed to their SM value.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_{2V}$ parameter for the HH to bb$\tau\tau$ analysis. All other coupling modifiers are fixed to their SM value.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_{2V}$ parameter for the HH to bb$\gamma\gamma$ analysis. All other coupling modifiers are fixed to their SM value.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_{2V}$ parameter for the double-Higgs combination. All other coupling modifiers are fixed to their SM value.
Observed constraints in the $\kappa_{2V}$–$\kappa_{V}$ plane from double-Higgs combination. The solid lines show the 68% (95%) CL contours.
Observed constraints in the $\kappa_{2V}$–$\kappa_{V}$ plane from double-Higgs combination. The dashed lines show the 68% (95%) CL contours.
Expected constraints in the $\kappa_{2V}$-$\kappa_{V}$ plane from double-Higgs combination. The solid lines show the 68% CL contours.
Expected constraints in the $\kappa_{2V}$-$\kappa_{V}$ plane from double-Higgs combination. The dashed lines show the 95% CL contours.
Evidence is reported for electroweak (EW) vector boson scattering in the decay channel $\ell\nu$qq of two weak vector bosons WV (V = W or Z), produced in association with two parton jets. The search uses a data set of proton-proton collisions at 13 TeV collected with the CMS detector during 2016-2018 with an integrated luminosity of 138 fb$^{-1}$. Events are selected requiring one lepton (electron or muon), moderate missing transverse momentum, two jets with a large pseudorapidity separation and a large dijet invariant mass, and a signature consistent with the hadronic decay of a W/Z boson. The cross section is computed in a fiducial phase space defined at parton level requiring all parton transverse momenta $p_\mathrm{T}$$\gt$ 10 GeV and at least one pair of outgoing partons with invariant mass $m_\mathrm{qq}$$\gt$ 100 GeV. The measured and expected EW WV production cross sections are 1.90 $^{+0.53}_{-0.46}$ pb and 2.23 $^{+0.08}_{-0.11}$ (scale) $\pm$ 0.05 (PDF) pb, respectively, where PDF is the parton distribution function. The observed EW signal strength is $m_\mathrm{EW}$ = 0.85 $\pm$ 0.12 (stat) $^{+0.19}_{-0.17}$ (syst), corresponding to a signal significance of 4.4 standard deviations with 5.1 expected, and it is measured keeping the quantum chromodynamics (QCD) associated diboson production fixed to the standard model prediction. This is the first evidence of vector boson scattering in the $\ell\nu$qq decay channel at LHC. The simultaneous measurement of the EW and QCD associated diboson production agrees with the standard model prediction.
Expected and observed cross sections for EW and EW+QCD WV production in association with 2 jets. Two separate maximum likelihood fits are performed: the measurement of the purely EW signal strength μ_EW keeping the QCD WV production contribution fixed to the SM prediction μQCD = 1; the measurement of the signal strength considering as signal the EW and QCD WV processes together.
Invariant mass of the pair of the VBS tag jets in the resolved category. The last bin contains overflow events.
Invariant mass of the pair of the VBS tag jets in the boosted category. The last bin contains overflow events.
Simultaneous EW and QCD WV signal strength fit.
This paper reports constraints on Higgs boson production with transverse momentum above 1 TeV. The analyzed data from proton-proton collisions at a center-of-mass energy of 13 TeV were recorded with the ATLAS detector at the Large Hadron Collider from 2015 to 2018 and correspond to an integrated luminosity of 136 fb$^{-1}$. Higgs bosons decaying into $b\bar{b}$ are reconstructed as single large-radius jets recoiling against a hadronic system and identified by the experimental signature of two $b$-hadron decays. The experimental techniques are validated in the same kinematic regime using the $Z\rightarrow b\bar{b}$ process.The 95$\% $ confidence-level upper limit on the cross section for Higgs boson production with transverse momentum above 450 GeV is 115 fb, and above 1 TeV it is 9.6 fb. The Standard Model cross section predictions for a Higgs boson with a mass of 125 GeV in the same kinematic regions are 18.4 fb and 0.13 fb, respectively.
- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Standard Model cross sections:</b> <a href="102183?table=SMcrosssections">table</a><br/><br/> <b>Cutflow ggF:</b> <a href="102183?table=CutflowggF">table</a><br/><br/> <b>Cutflow VBF:</b> <a href="102183?table=CutflowVBF">table</a><br/><br/> <b>Cutflow VH:</b> <a href="102183?table=CutflowVH">table</a><br/><br/> <b>Cutflow ttH:</b> <a href="102183?table=CutflowttH">table</a><br/><br/> <b>Production mode fractional contributions::</b> <a href="102183?table=Fractionalcontribution">table</a><br/><br/> <b>Acceptance times efficiency - fiducial:</b> <a href="102183?table=Acceptancetimesefficiency-fiducial">table</a><br/><br/> <b>Acceptance times efficiency - differential:</b> <a href="102183?table=Acceptancetimesefficiency-differential">table</a><br/><br/> <b>Yield table - fiducial:</b> <a href="102183?table=Eventyields-fiducial">table</a><br/><br/> <b>Yield table - differential:</b> <a href="102183?table=Eventyields-differential">table</a><br/><br/>
Predicted Higgs boson production cross sections within fiducial volumes obtained from the four production mode MC samples (ggF, VBF, VH, and ttH) described in Section 3 with and without higher order electroweak (EW) corrections. All μH values reported are with respect to cross section with EW corrections.
The efficiency for simulated ggF events to pass each analysis cut.
The efficiency for simulated VBF events to pass each analysis cut.
The efficiency for simulated VH events to pass each analysis cut.
The efficiency for simulated ttH events to pass each analysis cut.
The fractional contribution of each production mode to a given analysis region around the Higgs boson peak, defined as 105 < mJ < 140 GeV. The fraction is given with respect to the total signal yield in the analysis region in question.
Signal acceptance times efficiency within the fiducial volume used in the fiducial region.
Signal acceptance times efficiency for the STXS volumes in the differential measurement. Along with the pTH requirements shown, |yH | < 2 is required. For events with pTH < 300 GeV, the acceptance times efficiency is less than 0.1 × 10−2.
Event yields and associated uncertainties after the global likelihood fit in the pT(H) > 450 GeV fiducial region. The total background yield can differ from the sum of the individual components due to rounding.
Event yields and associated uncertainties after the global likelihood fit of the differential regions. The total background yield can differ from the sum of the individual components due to rounding. The five STXS volumes are labeled pT0–pT4 corresponding to pTH < 300 GeV, 300 – 450 GeV, 450 – 650 GeV, 650 – 1000 GeV, and > 1000 GeV, respectively. The pT0 event yield is constrained to its SM value within the theoretical and experimental uncertainties and free parameters act independently on the remaining four volumes.
A measurement is presented of electroweak (EW) production of a W boson in association with two jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV. The data sample was recorded by the CMS Collaboration at the LHC and corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The measurement is performed for the $\ell\nu$jj final state (with $\ell\nu$ indicating a lepton-neutrino pair, and j representing the quarks produced in the hard interaction) in a kinematic region defined by invariant mass $m_\mathrm{jj}$ $>$ 120 GeV and transverse momenta $p_\mathrm{T j}$ $>$ 25 GeV. The cross section of the process is measured in the electron and muon channels yielding $\sigma_\mathrm{EW}$(Wjj) = 6.23 $\pm$ 0.12 (stat) $\pm$ 0.61 (syst) pb per channel, in agreement with leading-order standard model predictions. The additional hadronic activity of events in a signal-enriched region is studied, and the measurements are compared with predictions. The final state is also used to perform a search for anomalous trilinear gauge couplings. Limits on anomalous trilinear gauge couplings associated with dimension-six operators are given in the framework of an effective field theory. The corresponding 95% confidence level intervals are $-$2.3 $<$ $c_{\mathrm{WWW}}/\Lambda^2$ $<$ 2.5 TeV$^{-2}$, $-$8.8 $<$ $c_{\mathrm{W}}/\Lambda^2$ $<$ 16 TeV$^{-2}$, and $-$45 $<$ $c_{\mathrm{B}}/\Lambda^2$ $<$ 46 TeV$^{-2}$. These results are combined with the CMS EW Zjj analysis, yielding the constraint on the $c_{\mathrm{WWW}}$ coupling: $-$1.8 $<$ $c_{\mathrm{WWW}}/\Lambda^2$ $<$ 2.0 TeV$^{-2}$.
Transformed BDT output distribution after the event preselection, in the muon channel.
Transformed BDT output distribution after the event preselection, in the electron channel.
Muon pT in data and SM backgrounds, and various aTGC scenarios after the event preselection, in the muon channel.
Electron pT in data and SM backgrounds, and various aTGC scenarios after the event preselection, in the electron channel.
Measured cross section and signal strength, relative to the standard model expectation.
One-dimensional limits on the ATGC EFT parameters at 95% CL.
One-dimensional limits on the ATGC effective Lagrangian (LEP parametrization) parameters at 95% CL.
One-dimensional limits on the ATGC EFT parameters at 95% CL from the combination of EW Wjj and EW Zjj analyses.
One-dimensional limits on the ATGC effective Lagrangian (LEP parametrization) parameters at 95% CL from the combination of EW Wjj and EW Zjj analyses.
Hadronic activity veto efficiencies in the signal-enriched BDT> 0.95 region for the muon and electron channels combined, as a function of the leading additional jet $p_T$. The data are compared with the background-only prediction as well as background+signal with PYTHIA parton showering and background+signal with HERWIG++ parton showering. In addition, the background+signal prediction from POWHEG plus HERWIG++ parton showering is included. The uncertainty bands include only the statistical uncertainty in the prediction from simulation.
Hadronic activity veto efficiencies in the signal-enriched BDT> 0.95 region for the muon and electron channels combined, as a function of additional jet $H_T$. The data are compared with the background-only prediction as well as background+signal with PYTHIA parton showering and background+signal with HERWIG++ parton showering. In addition, the background+signal prediction from POWHEG plus HERWIG++ parton showering is included. The uncertainty bands include only the statistical uncertainty in the prediction from simulation.
Hadronic activity veto efficiencies in the signal-enriched BDT> 0.95 region for the muon and electron channels combined, as a function of leading soft-activity jet $p_T$. The data are compared with the background-only prediction as well as background+signal with PYTHIA parton showering and background+signal with HERWIG++ parton showering. In addition, the background+signal prediction from POWHEG plus HERWIG++ parton showering is included. The uncertainty bands include only the statistical uncertainty in the prediction from simulation.
Hadronic activity veto efficiencies in the signal-enriched BDT> 0.95 region for the muon and electron channels combined, as a function of soft-activity jet $H_T$. The data are compared with the background-only prediction as well as background+signal with PYTHIA parton showering and background+signal with HERWIG++ parton showering. In addition, the background+signal prediction from POWHEG plus HERWIG++ parton showering is included. The uncertainty bands include only the statistical uncertainty in the prediction from simulation.
A measurement of the $t$-channel single-top-quark and single-top-antiquark production cross-sections in the lepton+je ts channel is presented, using 3.2 fb$^{-1}$ of proton--proton collision data at a centre-of-mass energy of 13 TeV, recorded with the ATLAS detector at the LHC in 2015. Events are selected by requiring one charged lepton (electron or muon), missing transverse momentum, and two jets with high transverse momentum, exactly one of which is required to be $b$-tagged. Using a binned maximum-likelihood fit to the discriminant distribution of a neural network, the cross-sections are determined to be $\sigma(tq) = 156 \pm 5 \, (\mathrm{stat.}) \pm 27 \, (\mathrm{syst.}) \pm 3\,(\mathrm{lumi.})$ pb for single top-quark production and $\sigma(\bar{t}q) = 91 \pm 4 \, (\mathrm{stat.}) \pm 18 \, (\mathrm{syst.}) \pm 2\,(\mathrm{lumi.})$ pb for single top-antiquark production, assuming a top-quark mass of 172.5 GeV. The cross-section ratio is measured to be $R_t = \sigma(tq)/\sigma(\bar{t}q) = 1.72 \pm 0.09 \, (\mathrm{stat.}) \pm 0.18 \, (\mathrm{syst.})$.
Predicted and observed event yields for the signal region. The quoted uncertainties include uncertainties in the theoretical cross-sections, in the number of multijet events, and the statistical uncertainties. The event yield of the $W^+ + $jets process in the $\ell^-$ channel is reported to be $<1$ in the paper. To provide a numerical value for this table in HEPdata, the yield is approximated with $1\pm 1$. The same is done for the event yield of the $W^- + $jets process in the $\ell^+$ channel.
Estimated scale factors, $\hat{\beta}$, and number of events, $\hat{\nu}=\hat{\beta}\cdot\nu$, for the $\ell^+$ and $\ell^-$ channel from the minimisation of the likelihood function. The quoted uncertainties in $\hat{\beta}$ and $\hat{\nu}$ include the statistical uncertainty and the uncertainties from the constraints on the background normalisation as used in the likelihood function.
Measured total cross sections of single top-quark and single top-antiquark production and their ratio $R_t$. In addition, the sum of top-quark and top-antiquark production is provided as well. Based on the total cross section the value of $f_\mathrm{LV}\cdot |V_{tb}|$ is determined.
List of systematic uncertainties contributing to the total uncertainty in the measured values of $\sigma(tq)$, $\sigma(\bar{t}q)$, and $R_t= \sigma(tq)/\sigma(\bar{t}q)$. The estimation of the systematic uncertainties has a statistical uncertainty of $0.3\;\%$. In the publication, uncertainties contributing less than $0.5\,\%$ are marked with ``$<0.5$''. To provide numerical values for this table in HEPdata, these uncertainties are approximated with $\pm 0.5\,\%$. This approximation is applied to the following uncertainties on $\sigma(tq):$ electron uncertainties, $c$-tagging efficiency, light-jet tagging efficiency and $t\bar{t}$, $Wt$, $t\bar{b}+\bar{t}b$ radiation. For the measurement of $\sigma(\bar{t}q)$ the approximation is only applied to the uncertainty in the light-jet tagging efficiency. In case of the ratio $R_t$, there are six uncertainties for which the impact on $R_t$ is estimated to be $<0.5$, but for the purpose of providing the data in electronic form in this table they are quoted as $\pm 0.5\,\%$. These uncertainties are $E_\mathrm{T}^{\mathrm{miss}}$ modelling, '$b$-tagging efficiency, light-jet tagging efficiency, PDF, other background normalisation and luminosity.
Measured values of the cross-sections $\sigma(tq)$, $\sigma(\bar{t}q)$, $\sigma(tq+\bar{t} q)$, and $R_t$ for different simulated top-quark masses. The quoted uncertainties are statistical only.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.