The total and differential cross sections of the process e+e- -> n gamma with n >= 2 are measured using data collected by the L3 experiment at centre-of-mass energies of \sqrt{s}=183 and 189 GeV. The results are in agreement with the Standard Model expectations. Limits are set on deviations from QED, contact interaction cut-off parameters and masses of excited electrons.
Measured cross section.
Measured differential cross sections corrected for efficiency and additional photons as a function of cos(theta) where theta is the polar angle of the event defined as. cos(theta)=ABS((sin(theta1-theta2)/2)/(sin(theta1+theta2)/2)).
We have studied the process e<sup loc="post">+</sup>e<sup loc="post">−</sup> → nγ (n ≥ 2) at an average center-of-mass energy of 133 GeV using the L3 detector at LEP. For an integrated luminosity of 4.95 pb<sup loc="post">−1</sup> we find one γγγγ(γ) final state with only hard photons. The rates of both γγγ and γγ events are consistent with QED expectations. The cross section of the reaction e<sup loc="post">+</sup>e<sup loc="post">−</sup> → γγ(γ) in the polar range 16° < θγ < 164° is measured to be 22.6 ± 2.2 pb. Decays into photons of narrow scalar resonances with masses between 90 and 130 GeV are not observed. The observation of the event with four energetic photons is consistent with QED although the kinematic configuration of the photons is atypical.
Cross section for process E+ E- --> GAMMA GAMMA (GAMMA) with two hard photons.Error is purely statistical, systematic effects are neglected.
No description provided.
Total and differential cross sections for the process e + e − → γγ ( γ ), and the total cross section for the process e + e − → γγγ , are measured at energies around 91 GeV using the data collected with the L3 detector from 1991 to 1993. We set lower limits, at 95% CL, on a contact interaction energy scale parameter Λ > 602 GeV, on the mass of an excited electron m e ∗ >146 GeV and on the QED cut-off parameters Λ + > 149 GeV and Λ _ > 143 GeV. Upper limits are also set o branching fractions of Z decaying into γγ , π ° and ηγ of 5.2 × 10 −5 , 5.2 × 10 −5 and 7.6 × 10 −5 respectively. The reactions e + e − → ℓ + ℓ − nγ (ℓ = e , μ , τ ) are studied using the data collected from 1990 to 1994. The data are consistent with the QED expectations.
No description provided.
No description provided.
No description provided.
We have measured the total and differential cross sections of the reaction e + e − → γγ ( γ ) at center-of-mass energies around 91 GeV, with an integrated luminosity of 14.2 pb −1 . The results are in good agreement with QED predictions. We set lower limits, at 95% confidence level, on the QED cutoff parameters of Λ + > 139 GeV, Λ − > 108 GeV and on the mass of an excited electron of m e∗ > 127 GeV . We searched for Z 0 rare decays with photonic signitures in the final state. Upper limits, at 95% confidence level, for branching ratio of Z 0 decaying into π 0 γ / γγ , νγ and γγγ are 1.2 × 10 −4 , 1.8 × 10 −4 , 3.3 × 10 −5 respectively.
Measured cross section for the 1991 data.
Measured cross section for the 1990 data.
Measured differential cross sections of combined 1990 and 1991 data.
Measurements of the differential cross sections for e + e − →μ + μ − and e + e − →τ + τ − at values of s from 52 to 57 GeV are reported. The forward-backward asymmetries and the total cross sections for these reactions are found to be in agreement with predictions of the standard model of the electro-weak interactions. These measurements are used to extract values of the weak coupling constant g v e g v l and g A e g A l , where l = μ or τ .
Axis error includes +- 5/5 contribution (Included in the quoted errors for the total cross sections. The main contribution to SYS-ERR are the systematic uncertainty in the luminosity measurement and the uncertainty in the computer modeling of the various efficiencies and backgrounds).
Axis error includes +- 5/5 contribution (Included in the quoted errors for the total cross sections. The main contribution to SYS-ERR are the systematic uncertainty in the luminosity measurement and the uncertainty in the computer modeling of the various efficiencies and backgrounds).
No description provided.
The cross section for elastic scattering of 794-MeV neutrons by deuterium has been measured for neutron center of mass angles from 139° to 179°. The angular distribution is fitted very well both by an empirical function αeβ(μ−μ180∘) and by a calculation that uses the one parameter Craigie-Wilkin triangle diagram technique. [NUCLEAR REACTION nH2→H2n, E=794 MeV; measured σ(θ). Calculated σ(θ) with triangle diagram techniques.]
X ERROR H = 12.60 CM. X ERROR D(THETA) = 2.0000 DEG.
The differential cross section for n−p elastic scattering in the angular region 145°<θc.m.<180° has been measured with high statistical accuracy using the monoenergetic neutron beam at Clinton P. Anderson Meson Physics Facility. The results differ significantly from previous Dubna and Princeton-Pennsylvania Accelerator results but agree reasonably well with recent Saclay data except at extreme backward angles.
No description provided.
We present experimental results on K + d interactions from 865 to 1585 MeV/ c incident beam momentum. We report measurements of several K + d partial cross sections and calculate most of the others using relations derived from isospin conservation and data from other experiments. The most striking feature of the cross section data is the abrupt rise of the total single-pion-production cross section near 1000 MeV/ c . We extract isospin-0 KN partial cross sections and find a rapid quasi-two-body reaction KN → K ∗ N . As in the case of the isospin-1 K + N system, it appears that the structure around 1200 MeV/ c in the total cross section for the isospin-0 K ∗ N system is well reconstructed by the sum of three smoothly varying channel cross sections σ 0 (KN), σ 0 (KN π ) and σ 0 (KN ππ ). We study thereaction KN → K ∗ N near threshold and find that the production and decay angular distributions can be interpreted in terms of t -channel phenomena, specifically a superposition of ω, ϱ, and π exchange. As is true of the isospin-1 KΔ and K ∗ N final states, the isospin-0 K ∗ N state has a behavior near threshold which is not very different from its behavior at much higher energy.
No description provided.
No description provided.
No description provided.