The cross section for the elastic scattering of positrons from protons has been compared with the corresponding electron cross section using secondary beams derived from the photon beam of the Cornell 2-GeV synchrotron. The paths of the scattered leptons (positrons or electrons) and recoil protons were recorded in spark chambers and were used to determine the incident lepton energy of each event. Elastic scatterings were identified by requiring coplanarity and a fit to the scattering kinematics. The detection system was sensitive to scattering angles between 25° and 75°. The ratio of the positron cross section to the corresponding electron cross section was 0.992±0.017 at 800 MeV and 0.987±0.019 at 1200 MeV. No significant variation of the ratio with angle of scattering was found.
No description provided.
No description provided.
We measured the π0 photoproduction differential cross section at 180° for a range of incident photon energies between 650 and 1750 MeV. The cross sections are dominated by the D13(1525), D15(1688), and F37(1920) resonances.
No description provided.
None
No description provided.
We report charged-particle pair correlation analyses in the space of Delta -phi (azimuth) and Delta -eta (pseudo-rapidity), for central Au + Au collisions at sqrt{s_{NN}} = 200 GeV in the STAR detector. The analysis involves unlike-sign charge pairs and like-sign charge pairs, which are transformed into charge-dependent (CD) signals and charge-independent (CI) signals. We present detailed parameterizations of the data. A model featuring dense gluonic hot spots as first proposed by van Hove predicts that the observables under investigation would have sensitivity to such a substructure should it occur, and the model also motivates selection of transverse momenta in the range 0.8 < p_t < 2.0$ GeV/c. Both CD and CI correlations of high statistical significance are observed and possible interpretations are discussed.
FIG. 1: a) left side: The $\Delta\phi$ - $\Delta\eta$ correlation data for unlike-sign charge particle pairs from the Star central trigger dataset shown in a 2-dimensional (2-D) perspective plot. The particle tracks have 0.8 GeV/c < $p_t$ < 2.0 GeV/c and |$\eta$| < 1.0. The structure that looks like tiles on a roof is due to the readout boundary effects of the 12 sector TPC. b) right side: The similar correlation data for like-sign charge particle pairs is shown.
FIG. 1: a) left side: The $\Delta\phi$ - $\Delta\eta$ correlation data for unlike-sign charge particle pairs from the Star central trigger dataset shown in a 2-dimensional (2-D) perspective plot. The particle tracks have 0.8 GeV/c < $p_t$ < 2.0 GeV/c and |$\eta$| < 1.0. The structure that looks like tiles on a roof is due to the readout boundary effects of the 12 sector TPC. b) right side: The similar correlation data for like-sign charge particle pairs is shown.
FIG. 2: a) left side: The correlation data for the ratio of the histograms of same-event-pairs to mixed-event-pairs for unlike-sign charged pairs, shown in a two-dimensional (2-D) perspective plot $\Delta\phi$ - $\Delta\eta$. The plot was normalized to a mean of 1. b) right side: The similar correlation data for like-sign charge pairs.
Event-by-event fluctuations of the ratio of inclusive charged to photon multiplicities at forward rapidity in Au+Au collision at $\sqrt{s_{NN}}$=200 GeV have been studied. Dominant contribution to such fluctuations is expected to come from correlated production of charged and neutral pions. We search for evidences of dynamical fluctuations of different physical origins. Observables constructed out of moments of multiplicities are used as measures of fluctuations. Mixed events and model calculations are used as baselines. Results are compared to the dynamical net-charge fluctuations measured in the same acceptance. A non-zero statistically significant signal of dynamical fluctuations is observed in excess to the model prediction when charged particles and photons are measured in the same acceptance. We find that, unlike dynamical net-charge fluctuation, charge-neutral fluctuation is not dominated by correlation due to particle decay. Results are compared to the expectations based on the generic production mechanism of pions due to isospin symmetry, for which no significant (<1%) deviation is observed.
Multiplicity distributions of raw charged particles and photons.
The $v_{dyn}$ and the three terms of $v_{dyn}$ vs $\sqrt{\langle N_{ch}\rangle \langle N_{\gamma}\rangle }$ for real events. $\omega_{ch}^{real}$ is plotted.
The $v_{dyn}$ and the three terms of $v_{dyn}$ vs $\sqrt{\langle N_{ch}\rangle \langle N_{\gamma}\rangle }$ for mixed events. $\omega_{ch}^{mixed}$ is plotted.
The NA61/SHINE experiment at the CERN SPS is performing a uniqe study of the phase diagram of strongly interacting matter by varying collision energy and nuclear mass number of colliding nuclei. In central Pb+Pb collisions the NA49 experiment found structures in the energy dependence of several observables in the CERN SPS energy range that had been predicted for the transition to a deconfined phase. New measurements of NA61/SHINE find intriguing similarities in p+p interactions for which no deconfinement transition is expected at SPS energies. Possible implications will be discussed.
Results on $\phi$ meson production in inelastic p+p collisions at CERN SPS energies are presented. They are derived from data collected by the NA61/SHINE fixed target experiment, by means of invariant mass spectra fits in the $\phi \to K^+K^-$ decay channel. They include the first ever measured double differential spectra of $\phi$ mesons as a function of rapidity $y$ and transverse momentum $p_T$ for proton beam momenta of 80 GeV/c and 158 GeV/c, as well as single differential spectra of $y$ or $p_T$ for beam momentum of 40 GeV/c. The corresponding total $\phi$ yields per inelastic p+p event are obtained. These results are compared with existing data on $\phi$ meson production in p+p collisions. The comparison shows consistency but superior accuracy of the present measurements. The emission of $\phi$ mesons in p+p reactions is confronted with that occurring in Pb+Pb collisions, and the experimental results are compared with model predictions. It appears that none of the considered models can properly describe all the experimental observables.
Double differential multiplicity of $\phi$ mesons produced in minimum bias p+p collisions at beam momentum of 158 GeV/c, as a function of transverse momentum $p_T$ and rapidity $y$.
Double differential multiplicity of $\phi$ mesons produced in minimum bias p+p collisions at beam momentum of 80 GeV/c, as a function of transverse momentum $p_T$ and rapidity $y$.
Transverse momentum $p_T$ spectrum of $\phi$ mesons produced in minimum bias p+p collisions at beam momentum of 40 GeV/c, in a broad rapidity $y$ bin of (0, 1.5).
Diffractive dissociation of quasi-real photons at a photon-proton centre of mass energy of W 200 GeV is studied with the ZEUS detector at HERA. The process under consideration is gamma p -> X N, where X is the diffractively dissociated photon system of mass M_X and N is either a proton or a nucleonic system with mass M_N < 2GeV. The cross section for this process in the interval 3 < M_X < 24 GeV relative to the total photoproduction cross section was measured to be sigma~partial_D / sigma_tot = 6.2 +- 0.2(stat) +- 1.4(syst)%. After extrapolating this result to the mass interval of m_phi~2 < M_X~2 < 0.05 W~2 and correcting it for proton dissociation, the fraction of the total cross section attributed to single diffractive photon dissociation, gamma p -> X p, is found to be sigma_SD / sigma_tot = 13.3 +- 0.5(stat) +- 3.6(syst)%. The mass spectrum of the dissociated photon system in the interval 8 < M_X < 24 GeV can be described by the triple pomeron (PPP) diagram with an effective pomeron intercept of alpha_P(0) = 1.12 +- 0.04(stat) +- 0.08(syst). The cross section for photon dissociation in the range 3 < M_X < 8 GeV is significantly higher than that expected from the triple pomeron amplitude describing the region 8 < M_X < 24 GeV. Assuming that this discrepancy is due to a pomeron-pomeron-reggeon (PPR) term, its contribution to the diffractive cross section in the interval 3 < M_X < 24 GeV is estimated to be f_PPR = 26 +- 3(stat) +- 12(syst)%.
Fraction of the total photoproduction cross section attributed to the photon dissociation.
The fraction of the total photoproduction cross section due to single dif fractive photon dissociation, in the mass range M_phi**2 < M_DD < X >**2 < 0.05 *W**2.
Identification of the diffractive processes was performed on the basis of the shape of reconstructed hadronic mass spectrum. No rapidity-gap was required.
We present measurements of the structure function \Ft\ in $e~+p$ scattering at HERA in the range $3.5\;\Gevsq < \qsd < 5000\;\Gevsq$. A new reconstruction method has allowed a significant improvement in the resolution of the kinematic variables and an extension of the kinematic region covered by the experiment. At $ \qsd < 35 \;\Gevsq$ the range in $x$ now spans $6.3\cdot 10~{-5} < x < 0.08$ providing overlap with measurements from fixed target experiments. At values of $Q~2$ above 1000 GeV$~2$ the $x$ range extends to 0.5. Systematic errors below 5\perc\ have been achieved for most of the kinematic region. The structure function rises as \x\ decreases; the rise becomes more pronounced as \qsd\ increases. The behaviour of the structure function data is well described by next-to-leading order perturbative QCD as implemented in the DGLAP evolution equations.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.